Tag Archives: electric gearbox

China Custom ZD Right Angle Gearbox UL, CE, ISO9001, CCC, RoHS Approved Electric AC Induction Gear Motor vacuum pump engine

Product Description

Introduction

ZD Leader has a wide range of micro motor production lines in the industry, including DC gear motor, AC gear motor,brushless DC motor,planetary gear motor, helical AC gear motor, hypoid gear motor, drum motor and planetary gearbox, etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations. We have a comprehensive global product development network, with pre-sales and after-sales centers in the United States, Germany, Japan, India, Vietnam and other countries.

Our Advantages

Range Of Gear Motor

Pleas click the click button to view more detailed specification for each serie of Gear Motor.

After Sales Service

Customized Product Service

Company Profile

FAQ

Q: What’re your main products?
A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge.

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

Please contact us if you have detailed requests, thank you !

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Operating Speed: Constant Speed
Number of Stator: Single-Phase
Species: Y, Y2 Series Three-Phase
Rotor Structure: Winding Type
Casing Protection: Closed Type
Number of Poles: 2
Customization:
Available

|

gear motor

Are there innovations or emerging technologies in the field of gear motor design?

Yes, there are several innovations and emerging technologies in the field of gear motor design. These advancements aim to improve the performance, efficiency, compactness, and reliability of gear motors. Here are some notable innovations and emerging technologies in gear motor design:

1. Miniaturization and Compact Design:

Advancements in manufacturing techniques and materials have enabled the miniaturization of gear motors without compromising their performance. Gear motors with compact designs are highly sought after in applications where space is limited, such as robotics, medical devices, and consumer electronics. Innovative approaches like micro-gear motors and integrated motor-gear units are being developed to achieve smaller form factors while maintaining high torque and efficiency.

2. High-Efficiency Gearing:

New gear designs focus on improving efficiency by reducing friction and mechanical losses. Advanced gear manufacturing techniques, such as precision machining and 3D printing, allow for the creation of intricate gear tooth profiles that optimize power transmission and minimize losses. Additionally, the use of high-performance materials, coatings, and lubricants helps reduce friction and wear, improving overall gear motor efficiency.

3. Magnetic Gearing:

Magnetic gearing is an emerging technology that replaces traditional mechanical gears with magnetic fields to transmit torque. It utilizes the interaction of permanent magnets to transfer power, eliminating the need for physical gear meshing. Magnetic gearing offers advantages such as high efficiency, low noise, compactness, and maintenance-free operation. While still being developed and refined, magnetic gearing holds promise for various applications, including gear motors.

4. Integrated Electronics and Controls:

Gear motor designs are incorporating integrated electronics and controls to enhance performance and functionality. Integrated motor drives and controllers simplify system integration, reduce wiring complexity, and allow for advanced control features. These integrated solutions offer precise speed and torque control, intelligent feedback mechanisms, and connectivity options for seamless integration into automation systems and IoT (Internet of Things) platforms.

5. Smart and Condition Monitoring Capabilities:

New gear motor designs incorporate smart features and condition monitoring capabilities to enable predictive maintenance and optimize performance. Integrated sensors and monitoring systems can detect abnormal operating conditions, track performance parameters, and provide real-time feedback for proactive maintenance and troubleshooting. This helps prevent unexpected failures, extend the lifespan of gear motors, and improve overall system reliability.

6. Energy-Efficient Motor Technologies:

Gear motor design is influenced by advancements in energy-efficient motor technologies. Brushless DC (BLDC) motors and synchronous reluctance motors (SynRM) are gaining popularity due to their higher efficiency, better power density, and improved controllability compared to traditional brushed DC and induction motors. These motor technologies, when combined with optimized gear designs, contribute to overall system energy savings and performance improvements.

These are just a few examples of the innovations and emerging technologies in gear motor design. The field is continuously evolving, driven by the need for more efficient, compact, and reliable motion control solutions in various industries. Gear motor manufacturers and researchers are actively exploring new materials, manufacturing techniques, control strategies, and system integration approaches to meet the evolving demands of modern applications.

gear motor

How do gear motors compare to other types of motors in terms of power and efficiency?

Gear motors can be compared to other types of motors in terms of power output and efficiency. The choice of motor type depends on the specific application requirements, including the desired power level, efficiency, speed range, torque characteristics, and control capabilities. Here’s a detailed explanation of how gear motors compare to other types of motors in terms of power and efficiency:

1. Gear Motors:

Gear motors combine a motor with a gear mechanism to deliver increased torque output and improved control. The gear reduction enables gear motors to provide higher torque while reducing the output speed. This makes gear motors suitable for applications that require high torque, precise positioning, and controlled movements. However, the gear reduction process introduces mechanical losses, which can slightly reduce the overall efficiency of the system compared to direct-drive motors. The efficiency of gear motors can vary depending on factors such as gear quality, lubrication, and maintenance.

2. Direct-Drive Motors:

Direct-drive motors, also known as gearless or integrated motors, do not use a gear mechanism. They provide a direct connection between the motor and the load, eliminating the need for gear reduction. Direct-drive motors offer advantages such as high efficiency, low maintenance, and compact design. Since there are no gears involved, direct-drive motors experience fewer mechanical losses and can achieve higher overall efficiency compared to gear motors. However, direct-drive motors may have limitations in terms of torque output and speed range, and they may require more complex control systems to achieve precise positioning.

3. Stepper Motors:

Stepper motors are a type of gear motor that excels in precise positioning applications. They operate by converting electrical pulses into incremental steps of movement. Stepper motors offer excellent positional accuracy and control. They are capable of precise positioning and can hold a position without power. Stepper motors have relatively high torque at low speeds, making them suitable for applications that require precise control and positioning, such as robotics, 3D printers, and CNC machines. However, stepper motors may have lower overall efficiency compared to direct-drive motors due to the additional power required to overcome the detents between steps.

4. Servo Motors:

Servo motors are another type of gear motor known for their high torque, high speed, and excellent positional accuracy. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer precise control over position, speed, and torque. Servo motors are widely used in applications that require accurate and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems. Servo motors can achieve high efficiency when properly optimized and controlled but may have slightly lower efficiency compared to direct-drive motors due to the additional complexity of the control system.

5. Efficiency Considerations:

When comparing power and efficiency among different motor types, it’s important to consider the specific requirements and operating conditions of the application. Factors such as load characteristics, speed range, duty cycle, and control requirements influence the overall efficiency of the motor system. While direct-drive motors generally offer higher efficiency due to the absence of mechanical losses from gears, gear motors can deliver higher torque output and enhanced control capabilities. The efficiency of gear motors can be optimized through proper gear selection, lubrication, and maintenance practices.

In summary, gear motors offer increased torque and improved control compared to direct-drive motors. However, gear reduction introduces mechanical losses that can slightly impact the overall efficiency of the system. Direct-drive motors, on the other hand, provide high efficiency and compact design but may have limitations in terms of torque and speed range. Stepper motors and servo motors, both types of gear motors, excel in precise positioning applications but may have slightly lower efficiency compared to direct-drive motors. The selection of the most suitable motor type depends on the specific requirements of the application, balancing power, efficiency, speed range, and control capabilities.

gear motor

What are the different types of gears used in gear motors, and how do they impact performance?

Various types of gears are used in gear motors, each with its unique characteristics and impact on performance. The choice of gear type depends on the specific requirements of the application, including torque, speed, efficiency, noise level, and space constraints. Here’s a detailed explanation of the different types of gears used in gear motors and their impact on performance:

1. Spur Gears:

Spur gears are the most common type of gears used in gear motors. They have straight teeth that are parallel to the gear’s axis and mesh with another spur gear to transmit power. Spur gears provide high efficiency, reliable operation, and cost-effectiveness. However, they can generate significant noise due to the meshing of teeth, and they may produce axial thrust forces. Spur gears are suitable for applications that require high torque transmission and moderate to high rotational speeds.

2. Helical Gears:

Helical gears have angled teeth that are cut at an angle to the gear’s axis. This helical tooth configuration enables gradual engagement and smoother tooth contact, resulting in reduced noise and vibration compared to spur gears. Helical gears provide higher load-carrying capacity and are suitable for applications that require high torque transmission and moderate to high rotational speeds. They are commonly used in gear motors where low noise operation is desired, such as in automotive applications and industrial machinery.

3. Bevel Gears:

Bevel gears have teeth that are cut on a conical surface. They are used to transmit power between intersecting shafts, usually at right angles. Bevel gears can have straight teeth (straight bevel gears) or curved teeth (spiral bevel gears). These gears provide efficient power transmission and precise motion control in applications where shafts need to change direction. Bevel gears are commonly used in gear motors for applications such as steering systems, machine tools, and printing presses.

4. Worm Gears:

Worm gears consist of a worm (a type of screw) and a mating gear called a worm wheel or worm gear. The worm has a helical thread that meshes with the worm wheel, resulting in a compact and high gear reduction ratio. Worm gears provide high torque transmission, low noise operation, and self-locking properties, which prevent reverse motion. They are commonly used in gear motors for applications that require high gear reduction and locking capabilities, such as in lifting mechanisms, conveyor systems, and machine tools.

5. Planetary Gears:

Planetary gears, also known as epicyclic gears, consist of a central sun gear, multiple planet gears, and an outer ring gear. The planet gears mesh with both the sun gear and the ring gear, creating a compact and efficient gear system. Planetary gears offer high torque transmission, high gear reduction ratios, and excellent load distribution. They are commonly used in gear motors for applications that require high torque and compact size, such as in robotics, automotive transmissions, and industrial machinery.

6. Rack and Pinion:

Rack and pinion gears consist of a linear rack (a straight toothed bar) and a pinion gear (a spur gear with a small diameter). The pinion gear meshes with the rack to convert rotary motion into linear motion or vice versa. Rack and pinion gears provide precise linear motion control and are commonly used in gear motors for applications such as linear actuators, CNC machines, and steering systems.

The choice of gear type in a gear motor depends on factors such as the desired torque, speed, efficiency, noise level, and space constraints. Each type of gear offers specific advantages and impacts the performance of the gear motor differently. By selecting the appropriate gear type, gear motors can be optimized for their intended applications, ensuring efficient and reliable power transmission.

China Custom ZD Right Angle Gearbox UL, CE, ISO9001, CCC, RoHS Approved Electric AC Induction Gear Motor   vacuum pump engine	China Custom ZD Right Angle Gearbox UL, CE, ISO9001, CCC, RoHS Approved Electric AC Induction Gear Motor   vacuum pump engine
editor by CX 2024-05-16

China supplier CHINAMFG 12 Volt DC Gear Motor Electric Gearbox Motor for Valve for Flush Toilet and Motorized Modulating Valve Customized with Best Sales

Product Description

Product Parameters

Model No.:KM-38L180-1013-1204.5

Size details:
Motor Diameter: φ20.4mm
Gear box length : 64*38*29mm
Shaft length: customization

Specifications:
 

Ratio Model No. Voltage No Load On Load
Operating
Range
Nominal
Voltage
Current Speed Current Torque Speed
V V A r/min A kg·cm r/min
1/1012 KM-38L180-1013-1204.5 6.0-12.0 12 0.069 10 0.418 10 7.6

All technical data can custom made for different application.

Customized items:
DC motor, gearbox motor, vibration motor, automotive motor.
Accessories offered like encoder, gear,worm, wire, connector.
Ball bearing or Oil-impregnated bearing.
Shaft configuration(multi-knurls,D-cut shape, four-knurls etc).
Metal end cap or plastic end cap.
 Precious metal brush/ carbon brush.
Technical data.

Detailed Photos

Application

 

Certifications

Packaging & Shipping

Company Profile

Our Advantages

FAQ

1.What kind of motor do you supply?

Kinmore specializes in making DC motors & gear motors with the diameter ranging from 6mm-80mm; automotive motors and vibration motors are our strength area, too; we also provide brushless motors.
 

2.What’s the lead time for samples or mass production?

Normally, it takes 15-25 days to produce samples; about mass production, it will take 35-40 days for DC motor production and 45-60 days for gear motor production.
 

3.Could you mind sending the quotation for this motor?

For all of our motors, they are customized based on different requirements. We will offer the quotation soon after you send your specific requests and annual quantity.
 

4.Do you offer some kinds of accessories like encoder, PCB, connector, soldering wired for the motor?

We specialize in motors, instead of accessories. But if your annual demand reaches a certain amount, we will apply to the engineer for offering the accessories.

5.Are your motors certificated with UL, CB Tüv, CE?

All of our motors are UL, CB Tüv, CE compliant, and all our items are making under REACH and ROHS. We could provide motor’s exploring drawing and BOM for your products UL certificated. We also could make motors built-in filters based on your EMC directive for your EMC passing.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Universal, Industrial, Household Appliances, Car, Power Tools
Operating Speed: Low Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Open Type
Number of Poles: 4
Customization:
Available

|

gear motor

Can gear motors be used in robotics, and if so, what are some notable applications?

Yes, gear motors are widely used in robotics due to their ability to provide torque, precise control, and compact size. They play a crucial role in various robotic applications, enabling the movement, manipulation, and control of robotic systems. Here are some notable applications of gear motors in robotics:

1. Robotic Arm Manipulation:

Gear motors are commonly used in robotic arms to provide precise and controlled movement. They enable the articulation of the arm’s joints, allowing the robot to reach different positions and orientations. Gear motors with high torque capabilities are essential for lifting, rotating, and manipulating objects with varying weights and sizes.

2. Mobile Robots:

Gear motors are employed in mobile robots, including wheeled robots and legged robots, to drive their locomotion. They provide the necessary torque and control for the robot to move, turn, and navigate in different environments. Gear motors with appropriate gear ratios ensure the robot’s mobility, stability, and maneuverability.

3. Robotic Grippers and End Effectors:

Gear motors are used in robotic grippers and end effectors to control the opening, closing, and gripping force. By integrating gear motors into the gripper mechanism, robots can grasp and manipulate objects of various shapes, sizes, and weights. The gear motors enable precise control over the gripping action, allowing the robot to handle delicate or fragile objects with care.

4. Autonomous Drones and UAVs:

Gear motors are utilized in the propulsion systems of autonomous drones and unmanned aerial vehicles (UAVs). They drive the propellers or rotors, providing the necessary thrust and control for the drone’s flight. Gear motors with high power-to-weight ratios, efficient energy conversion, and precise speed control are crucial for achieving stable and maneuverable flight in drones.

5. Humanoid Robots:

Gear motors are integral to the movement and functionality of humanoid robots. They are used in robotic joints, such as hips, knees, and shoulders, to enable human-like movements. Gear motors with appropriate torque and speed capabilities allow humanoid robots to walk, run, climb stairs, and perform complex motions resembling human actions.

6. Robotic Exoskeletons:

Gear motors play a vital role in robotic exoskeletons, which are wearable robotic devices designed to augment human strength and assist in physical tasks. Gear motors are used in the exoskeleton’s joints and actuators, providing the necessary torque and control to enhance human abilities. They enable users to perform tasks with reduced effort, assist in rehabilitation, or provide support in physically demanding environments.

These are just a few notable applications of gear motors in robotics. Their versatility, torque capabilities, precise control, and compact size make them indispensable components in various robotic systems. Gear motors enable robots to perform complex tasks, move with agility, interact with the environment, and assist humans in a wide range of applications, from industrial automation to healthcare and exploration.

gear motor

Can you explain the role of backlash in gear motors and how it’s managed in design?

Backlash plays a significant role in gear motors and is an important consideration in their design and operation. Backlash refers to the slight clearance or play between the teeth of gears in a gear system. It affects the precision, accuracy, and responsiveness of the gear motor. Here’s an explanation of the role of backlash in gear motors and how it is managed in design:

1. Role of Backlash:

Backlash in gear motors can have both positive and negative effects:

  • Compensation for Misalignment: Backlash can help compensate for minor misalignments between gears, shafts, or the load. It allows a small amount of movement before engaging the next set of teeth, reducing the risk of damage due to misalignment. This can be particularly beneficial in applications where precise alignment is challenging or subject to variations.
  • Negative Impact on Accuracy and Responsiveness: Backlash can introduce a delay or “dead zone” in the motion transmission. When changing the direction of rotation or reversing the load, the gear teeth must first overcome the clearance or play before engaging in the opposite direction. This delay can reduce the overall accuracy, responsiveness, and repeatability of the gear motor, especially in applications that require precise positioning or rapid changes in direction or speed.

2. Managing Backlash in Design:

Designers employ various techniques to manage and minimize backlash in gear motors:

  • Tight Manufacturing Tolerances: Proper manufacturing techniques and tight tolerances can help minimize backlash. Precision machining and quality control during the production of gears and gear components ensure closer tolerances, reducing the amount of play between gear teeth.
  • Preload or Pre-tensioning: Applying a preload or pre-tensioning force to the gear system can help reduce backlash. This technique involves introducing an initial force or tension that eliminates the clearance between gear teeth. It ensures immediate contact and engagement of the gear teeth, minimizing the dead zone and improving the overall responsiveness and accuracy of the gear motor.
  • Anti-Backlash Gears: Anti-backlash gears are designed specifically to minimize or eliminate backlash. They typically feature modifications to the gear tooth profile, such as modified tooth shapes or special tooth arrangements, to reduce clearance. Anti-backlash gears can be used in gear motor designs to improve precision and minimize the effects of backlash.
  • Backlash Compensation: In some cases, backlash compensation techniques can be employed. These techniques involve monitoring the position or movement of the load and applying control algorithms to compensate for the backlash. By accounting for the clearance and adjusting the control signals accordingly, the effects of backlash can be mitigated, improving accuracy and responsiveness.

3. Application-Specific Considerations:

The management of backlash in gear motors should be tailored to the specific application requirements:

  • Positioning Accuracy: Applications that require precise positioning, such as robotics or CNC machines, may require tighter backlash control to ensure accurate and repeatable movements.
  • Dynamic Response: Applications that involve rapid changes in direction or speed, such as high-speed automation or servo control systems, may require reduced backlash to maintain responsiveness and minimize overshoot or lag.
  • Load Characteristics: The nature of the load and its impact on the gear system should be considered. Heavy loads or applications with significant inertial forces may require additional backlash management techniques to maintain stability and accuracy.

In summary, backlash in gear motors can affect precision, accuracy, and responsiveness. While it can compensate for misalignments, backlash may introduce delays and reduce the overall performance of the gear motor. Designers manage backlash through tight manufacturing tolerances, preload techniques, anti-backlash gears, and backlash compensation methods. The management of backlash depends on the specific application requirements, considering factors such as positioning accuracy, dynamic response, and load characteristics.

gear motor

How does the gearing mechanism in a gear motor contribute to torque and speed control?

The gearing mechanism in a gear motor plays a crucial role in controlling torque and speed. By utilizing different gear ratios and configurations, the gearing mechanism allows for precise manipulation of these parameters. Here’s a detailed explanation of how the gearing mechanism contributes to torque and speed control in a gear motor:

The gearing mechanism consists of multiple gears with varying sizes, tooth configurations, and arrangements. Each gear in the system engages with another gear, creating a mechanical connection. When the motor rotates, it drives the rotation of the first gear, which then transfers the motion to subsequent gears, ultimately resulting in the output shaft’s rotation.

Torque Control:

The gearing mechanism in a gear motor enables torque control through the principle of mechanical advantage. The gear system utilizes gears with different numbers of teeth, known as gear ratio, to adjust the torque output. When a smaller gear (pinion) engages with a larger gear (gear), the pinion rotates faster than the gear but exerts more force or torque. This results in torque amplification, allowing the gear motor to deliver higher torque at the output shaft while reducing the rotational speed. Conversely, if a larger gear engages with a smaller gear, torque reduction occurs, resulting in higher rotational speed at the output shaft.

By selecting the appropriate gear ratio, the gearing mechanism effectively adjusts the torque output of the gear motor to match the requirements of the application. This torque control capability is essential in applications that demand high torque for heavy lifting or overcoming resistance, as well as applications that require lower torque but higher rotational speed.

Speed Control:

The gearing mechanism also contributes to speed control in a gear motor. The gear ratio determines the relationship between the rotational speed of the input shaft (driven by the motor) and the output shaft. When a gear motor has a higher gear ratio (more teeth on the driven gear compared to the driving gear), it reduces the output speed while increasing the torque. Conversely, a lower gear ratio increases the output speed while reducing the torque.

By choosing the appropriate gear ratio, the gearing mechanism allows for precise speed control in a gear motor. This is particularly useful in applications that require specific speed ranges or variations, such as conveyor systems, robotic movements, or machinery that needs to operate at different speeds for different tasks. The speed control capability of the gearing mechanism enables the gear motor to match the desired speed requirements of the application accurately.

In summary, the gearing mechanism in a gear motor contributes to torque and speed control by utilizing different gear ratios and configurations. It enables torque amplification or reduction, depending on the gear arrangement, allowing the gear motor to deliver the required torque output. Additionally, the gear ratio also determines the relationship between the rotational speed of the input and output shafts, providing precise speed control. These torque and speed control capabilities make gear motors versatile and suitable for a wide range of applications in various industries.

China supplier CHINAMFG 12 Volt DC Gear Motor Electric Gearbox Motor for Valve for Flush Toilet and Motorized Modulating Valve Customized   with Best Sales China supplier CHINAMFG 12 Volt DC Gear Motor Electric Gearbox Motor for Valve for Flush Toilet and Motorized Modulating Valve Customized   with Best Sales
editor by CX 2024-05-09

China high quality High Power Helical Gear Reduction Gearbox Electric Motor with Hypoid Reduction Gear supplier

Product Description

Product Description

High power Helical gear reduction gearbox electric motor with hypoid reduction gear

1.KM series Helical-hypoid Gearbox’s Characteristics
KM series helical-hypoid gearbox is a new-generation of product developed by Aokman. With a compromise of advanced technology both at home and abroad, its main features are as follows:
(1) Driven by hypoid gears, which has big ratios.
(2) Large output torque, high efficiency, energy saving and environmental protection.
(3) High-quality aluminum alloy housing, and light in weight and non-rusting.
(4) Smooth in running and low in noise, and can work long time in dreadful conditions.
(5) Good-looking in appearance, durable in service life and small in volume.
(6) Suitable for all round installation, wide application and easy use.
(7) The mounting dimension of KM series helical-hypoid gearbox are compatible with RV series worm gearbox.
(8) Modular and multi-structure can meet the demands of various conditions.

Detailed Photos

2. KM series Helical-hypoid Gearbox’s Main Materials
(1) Housing: die-cast aluminum alloy (frame size 27 to 57)
(2) Gear wheel: 20CrMnTiH1 carbonizing & quenching heat treatment make the hardness of gears surface be up to 56-62 HRC, and be retained carburization layers thickness between 0.3 and 0.5mm after precise grinding.
3. KM series Helical-hypoid Gearbox’s Surface Painting
Aluminum alloy housing:
(1) Shot blasting and special antiseptic treatment on the aluminum alloy surface.
(2) After phosphating, spray the RAL9571 silver white paint.4.Gearbox Parameters

Product Parameters

 

Models Stage Nominal Ratio Output Speed (n2)* Max. Torque Input Shaft Dia. Output Hole Dia. Output Shaft Dia.
KM050 3 Stage 50~300 4.8~27 130N.m Φ11 Φ20, Φ24 Φ25
2 Stage 7.5~60 24~181 130N.m Φ11
KM063 3 Stage 50~300 4.6~27 200N.m Φ11 Φ25, Φ28 Φ25
2 Stage 7.5~60 23~184 200N.m Φ14
KM075 3 Stage 50~300 4.7~28 350N.m Φ14 Φ28, Φ30, Φ35 Φ28
2 Stage 7.5~60 24~187 350N.m Φ16
KM090 3 Stage 50~300 4.7~28 500N.m Φ14 Φ35, Φ38 Φ35
2 Stage 7.5~60 24~187 500N.m Φ19
KM110 3 Stage 50~300 4.7~27 750N.m Φ19 Φ40, Φ42 Φ42
2 Stage 7.5~60 24~187 750N.m Φ24

Packaging & Shipping

Company Profile

Our Advantages

After Sales Service

Pre-sale services 1. Select equipment model.
2.Design and manufacture products according to clients’ special requirement.
3.Train technical personal for clients
Services during selling 1.Pre-check and accept products ahead of delivery.
2. Help clients to draft solving plans.
After-sale services 1.Assist clients to prepare for the first construction scheme.
2. Train the first-line operators.
3.Take initiative to eliminate the trouble rapidly.
4. Provide technical exchanging.

FAQ

1.Q:What kinds of gearbox can you produce for us?

A:Main products of our company: UDL series speed variator,RV series worm gear reducer, ATA series shaft mounted gearbox, X,B series gear reducer,
P series planetary gearbox and R, S, K, and F series helical-tooth reducer, more
than 1 hundred models and thousands of specifications
2.Q:Can you make as per custom drawing?
A: Yes, we offer customized service for customers.
3.Q:What is your terms of payment ?
A: 30% Advance payment by T/T after signing the contract.70% before delivery
4.Q:What is your MOQ?
A: 1 Set

If you have any demand for our products please feel free to contact me. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery
Function: Speed Changing, Speed Reduction
Layout: Orthogonal
Hardness: Hardened Tooth Surface
Installation: Industry
Step: Double or Three-Step
Customization:
Available

|

gear motor

Are there innovations or emerging technologies in the field of gear motor design?

Yes, there are several innovations and emerging technologies in the field of gear motor design. These advancements aim to improve the performance, efficiency, compactness, and reliability of gear motors. Here are some notable innovations and emerging technologies in gear motor design:

1. Miniaturization and Compact Design:

Advancements in manufacturing techniques and materials have enabled the miniaturization of gear motors without compromising their performance. Gear motors with compact designs are highly sought after in applications where space is limited, such as robotics, medical devices, and consumer electronics. Innovative approaches like micro-gear motors and integrated motor-gear units are being developed to achieve smaller form factors while maintaining high torque and efficiency.

2. High-Efficiency Gearing:

New gear designs focus on improving efficiency by reducing friction and mechanical losses. Advanced gear manufacturing techniques, such as precision machining and 3D printing, allow for the creation of intricate gear tooth profiles that optimize power transmission and minimize losses. Additionally, the use of high-performance materials, coatings, and lubricants helps reduce friction and wear, improving overall gear motor efficiency.

3. Magnetic Gearing:

Magnetic gearing is an emerging technology that replaces traditional mechanical gears with magnetic fields to transmit torque. It utilizes the interaction of permanent magnets to transfer power, eliminating the need for physical gear meshing. Magnetic gearing offers advantages such as high efficiency, low noise, compactness, and maintenance-free operation. While still being developed and refined, magnetic gearing holds promise for various applications, including gear motors.

4. Integrated Electronics and Controls:

Gear motor designs are incorporating integrated electronics and controls to enhance performance and functionality. Integrated motor drives and controllers simplify system integration, reduce wiring complexity, and allow for advanced control features. These integrated solutions offer precise speed and torque control, intelligent feedback mechanisms, and connectivity options for seamless integration into automation systems and IoT (Internet of Things) platforms.

5. Smart and Condition Monitoring Capabilities:

New gear motor designs incorporate smart features and condition monitoring capabilities to enable predictive maintenance and optimize performance. Integrated sensors and monitoring systems can detect abnormal operating conditions, track performance parameters, and provide real-time feedback for proactive maintenance and troubleshooting. This helps prevent unexpected failures, extend the lifespan of gear motors, and improve overall system reliability.

6. Energy-Efficient Motor Technologies:

Gear motor design is influenced by advancements in energy-efficient motor technologies. Brushless DC (BLDC) motors and synchronous reluctance motors (SynRM) are gaining popularity due to their higher efficiency, better power density, and improved controllability compared to traditional brushed DC and induction motors. These motor technologies, when combined with optimized gear designs, contribute to overall system energy savings and performance improvements.

These are just a few examples of the innovations and emerging technologies in gear motor design. The field is continuously evolving, driven by the need for more efficient, compact, and reliable motion control solutions in various industries. Gear motor manufacturers and researchers are actively exploring new materials, manufacturing techniques, control strategies, and system integration approaches to meet the evolving demands of modern applications.

gear motor

How do gear motors compare to other types of motors in terms of power and efficiency?

Gear motors can be compared to other types of motors in terms of power output and efficiency. The choice of motor type depends on the specific application requirements, including the desired power level, efficiency, speed range, torque characteristics, and control capabilities. Here’s a detailed explanation of how gear motors compare to other types of motors in terms of power and efficiency:

1. Gear Motors:

Gear motors combine a motor with a gear mechanism to deliver increased torque output and improved control. The gear reduction enables gear motors to provide higher torque while reducing the output speed. This makes gear motors suitable for applications that require high torque, precise positioning, and controlled movements. However, the gear reduction process introduces mechanical losses, which can slightly reduce the overall efficiency of the system compared to direct-drive motors. The efficiency of gear motors can vary depending on factors such as gear quality, lubrication, and maintenance.

2. Direct-Drive Motors:

Direct-drive motors, also known as gearless or integrated motors, do not use a gear mechanism. They provide a direct connection between the motor and the load, eliminating the need for gear reduction. Direct-drive motors offer advantages such as high efficiency, low maintenance, and compact design. Since there are no gears involved, direct-drive motors experience fewer mechanical losses and can achieve higher overall efficiency compared to gear motors. However, direct-drive motors may have limitations in terms of torque output and speed range, and they may require more complex control systems to achieve precise positioning.

3. Stepper Motors:

Stepper motors are a type of gear motor that excels in precise positioning applications. They operate by converting electrical pulses into incremental steps of movement. Stepper motors offer excellent positional accuracy and control. They are capable of precise positioning and can hold a position without power. Stepper motors have relatively high torque at low speeds, making them suitable for applications that require precise control and positioning, such as robotics, 3D printers, and CNC machines. However, stepper motors may have lower overall efficiency compared to direct-drive motors due to the additional power required to overcome the detents between steps.

4. Servo Motors:

Servo motors are another type of gear motor known for their high torque, high speed, and excellent positional accuracy. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer precise control over position, speed, and torque. Servo motors are widely used in applications that require accurate and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems. Servo motors can achieve high efficiency when properly optimized and controlled but may have slightly lower efficiency compared to direct-drive motors due to the additional complexity of the control system.

5. Efficiency Considerations:

When comparing power and efficiency among different motor types, it’s important to consider the specific requirements and operating conditions of the application. Factors such as load characteristics, speed range, duty cycle, and control requirements influence the overall efficiency of the motor system. While direct-drive motors generally offer higher efficiency due to the absence of mechanical losses from gears, gear motors can deliver higher torque output and enhanced control capabilities. The efficiency of gear motors can be optimized through proper gear selection, lubrication, and maintenance practices.

In summary, gear motors offer increased torque and improved control compared to direct-drive motors. However, gear reduction introduces mechanical losses that can slightly impact the overall efficiency of the system. Direct-drive motors, on the other hand, provide high efficiency and compact design but may have limitations in terms of torque and speed range. Stepper motors and servo motors, both types of gear motors, excel in precise positioning applications but may have slightly lower efficiency compared to direct-drive motors. The selection of the most suitable motor type depends on the specific requirements of the application, balancing power, efficiency, speed range, and control capabilities.

gear motor

What are the different types of gears used in gear motors, and how do they impact performance?

Various types of gears are used in gear motors, each with its unique characteristics and impact on performance. The choice of gear type depends on the specific requirements of the application, including torque, speed, efficiency, noise level, and space constraints. Here’s a detailed explanation of the different types of gears used in gear motors and their impact on performance:

1. Spur Gears:

Spur gears are the most common type of gears used in gear motors. They have straight teeth that are parallel to the gear’s axis and mesh with another spur gear to transmit power. Spur gears provide high efficiency, reliable operation, and cost-effectiveness. However, they can generate significant noise due to the meshing of teeth, and they may produce axial thrust forces. Spur gears are suitable for applications that require high torque transmission and moderate to high rotational speeds.

2. Helical Gears:

Helical gears have angled teeth that are cut at an angle to the gear’s axis. This helical tooth configuration enables gradual engagement and smoother tooth contact, resulting in reduced noise and vibration compared to spur gears. Helical gears provide higher load-carrying capacity and are suitable for applications that require high torque transmission and moderate to high rotational speeds. They are commonly used in gear motors where low noise operation is desired, such as in automotive applications and industrial machinery.

3. Bevel Gears:

Bevel gears have teeth that are cut on a conical surface. They are used to transmit power between intersecting shafts, usually at right angles. Bevel gears can have straight teeth (straight bevel gears) or curved teeth (spiral bevel gears). These gears provide efficient power transmission and precise motion control in applications where shafts need to change direction. Bevel gears are commonly used in gear motors for applications such as steering systems, machine tools, and printing presses.

4. Worm Gears:

Worm gears consist of a worm (a type of screw) and a mating gear called a worm wheel or worm gear. The worm has a helical thread that meshes with the worm wheel, resulting in a compact and high gear reduction ratio. Worm gears provide high torque transmission, low noise operation, and self-locking properties, which prevent reverse motion. They are commonly used in gear motors for applications that require high gear reduction and locking capabilities, such as in lifting mechanisms, conveyor systems, and machine tools.

5. Planetary Gears:

Planetary gears, also known as epicyclic gears, consist of a central sun gear, multiple planet gears, and an outer ring gear. The planet gears mesh with both the sun gear and the ring gear, creating a compact and efficient gear system. Planetary gears offer high torque transmission, high gear reduction ratios, and excellent load distribution. They are commonly used in gear motors for applications that require high torque and compact size, such as in robotics, automotive transmissions, and industrial machinery.

6. Rack and Pinion:

Rack and pinion gears consist of a linear rack (a straight toothed bar) and a pinion gear (a spur gear with a small diameter). The pinion gear meshes with the rack to convert rotary motion into linear motion or vice versa. Rack and pinion gears provide precise linear motion control and are commonly used in gear motors for applications such as linear actuators, CNC machines, and steering systems.

The choice of gear type in a gear motor depends on factors such as the desired torque, speed, efficiency, noise level, and space constraints. Each type of gear offers specific advantages and impacts the performance of the gear motor differently. By selecting the appropriate gear type, gear motors can be optimized for their intended applications, ensuring efficient and reliable power transmission.

China high quality High Power Helical Gear Reduction Gearbox Electric Motor with Hypoid Reduction Gear   supplier China high quality High Power Helical Gear Reduction Gearbox Electric Motor with Hypoid Reduction Gear   supplier
editor by CX 2024-04-17

China Best Sales Low Speed Gear Electric DC Motor with Angle Gearbox Micro Full Metal Gearbox Gear Motor DC a/c vacuum pump

Product Description

Quiet stable and reliable for long life operation

Motor type 63ZYT-125-24
Protection grade IP50
Duty cycle S1 (100%)
Rated voltage 24 V
Rated current 4.9  A
Input power 117.6 W
No-load current 0.4 A
Rated torque 0.27 Nm
Rated speed 3300 ±10% rpm
Rated output power 93.3 W
Friction torque 2 Ncm
efficiency 80%
Maximum torque 1.3 ±10% Nm
Maximum current 23 A
No-load speed 3650 ±10% rpm
Maximum power 245 W
Maximum shell temperature 85 ºC
Weight 1.7 Kg
     
Planetary gear box F1130
Protection grade IP65
Reduction ratio 710.5:1
Rated torque 120 Nm
Maximum torque 180 Nm
Ambient temperature -20 to 85 ºC
Grease Smart Smart top 28
Grease temperature range -20 to 160 ºC

Function: Control, Driving
Casing Protection: Protection Type
Number of Poles: 8
Certification: ISO9001, CCC, CE
Brand: Jintian
Power: 117.6W
Samples:
US$ 162/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

Where can individuals find reliable resources for learning more about gear motors and their applications?

Individuals seeking to learn more about gear motors and their applications have access to various reliable resources that provide valuable information and insights. Here are some sources where individuals can find reliable information about gear motors:

1. Manufacturer Websites:

Manufacturer websites are a primary source of information about gear motors. Gear motor manufacturers often provide detailed product specifications, application guides, technical documentation, and educational materials on their websites. These resources offer insights into different gear motor types, features, performance characteristics, and application considerations. Manufacturer websites are a reliable and convenient starting point for learning about gear motors.

2. Industry Associations and Organizations:

Industry associations and organizations related to mechanical engineering, automation, and motion control often have resources and publications dedicated to gear motors. These organizations provide technical articles, whitepapers, industry standards, and guidelines related to gear motor design, selection, and application. Examples of such associations include the American Gear Manufacturers Association (AGMA), International Electrotechnical Commission (IEC), and Institute of Electrical and Electronics Engineers (IEEE).

3. Technical Publications and Journals:

Technical publications and journals focused on engineering, robotics, and motion control are valuable sources of in-depth knowledge about gear motors. Publications like IEEE Transactions on Industrial Electronics, Mechanical Engineering magazine, or Motion System Design magazine often feature articles, case studies, and research papers on gear motor technology, advancements, and applications. These publications provide authoritative and up-to-date information from industry experts and researchers.

4. Online Forums and Communities:

Online forums and communities dedicated to engineering, robotics, and automation can be excellent resources for discussions, insights, and practical experiences related to gear motors. Websites like Stack Exchange, engineering-focused subreddits, or specialized forums provide platforms for individuals to ask questions, share knowledge, and engage in discussions with professionals and enthusiasts in the field. Participating in these communities allows individuals to learn from real-world experiences and gain practical insights.

5. Educational Institutions and Courses:

Technical colleges, universities, and vocational training centers often offer courses or programs in mechanical engineering, mechatronics, or automation that cover gear motor fundamentals and applications. These educational institutions provide comprehensive curricula, textbooks, and lecture materials that can serve as reliable resources for individuals interested in learning about gear motors. Additionally, online learning platforms like Coursera, Udemy, or LinkedIn Learning offer courses on topics related to gear motors and motion control.

6. Trade Shows and Exhibitions:

Attending trade shows, exhibitions, and industry conferences related to automation, robotics, or motion control provides opportunities to learn about the latest advancements in gear motor technology. These events often feature product demonstrations, technical presentations, and expert panels where individuals can interact with gear motor manufacturers, industry experts, and other professionals. It’s a great way to stay updated on the latest trends, innovations, and applications of gear motors.

When seeking reliable resources, it’s important to consider the credibility of the source, the expertise of the authors, and the relevance to the specific area of interest. By leveraging these resources, individuals can gain a comprehensive understanding of gear motors and their applications, from basic principles to advanced topics, enabling them to make informed decisions and effectively utilize gear motors in their projects or applications.

gear motor

Are there environmental benefits to using gear motors in certain applications?

Yes, there are several environmental benefits associated with the use of gear motors in certain applications. Gear motors offer advantages that can contribute to increased energy efficiency, reduced resource consumption, and lower environmental impact. Here’s a detailed explanation of the environmental benefits of using gear motors:

1. Energy Efficiency:

Gear motors can improve energy efficiency in various ways:

  • Torque Conversion: Gear reduction allows gear motors to deliver higher torque output while operating at lower speeds. This enables the motor to perform tasks that require high torque, such as lifting heavy loads or driving machinery with high inertia, more efficiently. By matching the motor’s power characteristics to the load requirements, gear motors can operate closer to their peak efficiency, minimizing energy waste.
  • Controlled Speed: Gear reduction provides finer control over the motor’s rotational speed. This allows for more precise speed regulation, reducing the likelihood of energy overconsumption and optimizing energy usage.

2. Reduced Resource Consumption:

The use of gear motors can lead to reduced resource consumption and environmental impact:

  • Smaller Motor Size: Gear reduction allows gear motors to deliver higher torque with smaller, more compact motors. This reduction in motor size translates to reduced material and resource requirements during manufacturing. It also enables the use of smaller and lighter equipment, which can contribute to energy savings during operation and transportation.
  • Extended Motor Lifespan: The gear mechanism in gear motors helps reduce the load and stress on the motor itself. By distributing the load more evenly, gear motors can help extend the lifespan of the motor, reducing the need for frequent replacements and the associated resource consumption.

3. Noise Reduction:

Gear motors can contribute to a quieter and more environmentally friendly working environment:

  • Noise Dampening: Gear reduction can help reduce the noise generated by the motor. The gear mechanism acts as a noise dampener, absorbing and dispersing vibrations and reducing overall noise emission. This is particularly beneficial in applications where noise reduction is important, such as residential areas, offices, or noise-sensitive environments.

4. Precision and Control:

Gear motors offer enhanced precision and control, which can lead to environmental benefits:

  • Precise Positioning: Gear motors, especially stepper motors and servo motors, provide precise positioning capabilities. This accuracy allows for more efficient use of resources, minimizing waste and optimizing the performance of machinery or systems.
  • Optimized Control: Gear motors enable precise control over speed, torque, and movement. This control allows for better optimization of processes, reducing energy consumption and minimizing unnecessary wear and tear on equipment.

In summary, using gear motors in certain applications can have significant environmental benefits. Gear motors offer improved energy efficiency, reduced resource consumption, noise reduction, and enhanced precision and control. These advantages contribute to lower energy consumption, reduced environmental impact, and a more sustainable approach to power transmission and control. When selecting motor systems for specific applications, considering the environmental benefits of gear motors can help promote energy efficiency and sustainability.

gear motor

Are there specific considerations for selecting the right gear motor for a particular application?

When selecting a gear motor for a specific application, several considerations need to be taken into account. The choice of the right gear motor is crucial to ensure optimal performance, efficiency, and reliability. Here’s a detailed explanation of the specific considerations for selecting the right gear motor for a particular application:

1. Torque Requirement:

The torque requirement of the application is a critical factor in gear motor selection. Determine the maximum torque that the gear motor needs to deliver to perform the required tasks. Consider both the starting torque (the torque required to initiate motion) and the operating torque (the torque required to sustain motion). Select a gear motor that can provide adequate torque to handle the load requirements of the application. It’s important to account for any potential torque spikes or variations during operation.

2. Speed Requirement:

Consider the desired speed range or specific speed requirements of the application. Determine the rotational speed (in RPM) that the gear motor needs to achieve to meet the application’s performance criteria. Select a gear motor with a suitable gear ratio that can achieve the desired speed at the output shaft. Ensure that the gear motor can maintain the required speed consistently and accurately throughout the operation.

3. Duty Cycle:

Evaluate the duty cycle of the application, which refers to the ratio of operating time to rest or idle time. Consider whether the application requires continuous operation or intermittent operation. Determine the duty cycle’s impact on the gear motor, including factors such as heat generation, cooling requirements, and potential wear and tear. Select a gear motor that is designed to handle the expected duty cycle and ensure long-term reliability and durability.

4. Environmental Factors:

Take into account the environmental conditions in which the gear motor will operate. Consider factors such as temperature extremes, humidity, dust, vibrations, and exposure to chemicals or corrosive substances. Choose a gear motor that is specifically designed to withstand and perform optimally under the anticipated environmental conditions. This may involve selecting gear motors with appropriate sealing, protective coatings, or materials that can resist corrosion and withstand harsh environments.

5. Efficiency and Power Requirements:

Consider the desired efficiency and power consumption of the gear motor. Evaluate the power supply available for the application and select a gear motor that operates within the specified voltage and current ranges. Assess the gear motor’s efficiency to ensure that it maximizes power transmission and minimizes wasted energy. Choosing an efficient gear motor can contribute to cost savings and reduced environmental impact.

6. Physical Constraints:

Assess the physical constraints of the application, including space limitations, mounting options, and integration requirements. Consider the size, dimensions, and weight of the gear motor to ensure it can be accommodated within the available space. Evaluate the mounting options and compatibility with the application’s mechanical structure. Additionally, consider any specific integration requirements, such as shaft dimensions, connectors, or interfaces that need to align with the application’s design.

7. Noise and Vibration:

Depending on the application, noise and vibration levels may be critical factors. Evaluate the acceptable noise and vibration levels for the application’s environment and operation. Choose a gear motor that is designed to minimize noise and vibration, such as those with helical gears or precision engineering. This is particularly important in applications that require quiet operation or where excessive noise and vibration may cause issues or discomfort.

By considering these specific factors when selecting a gear motor for a particular application, you can ensure that the chosen gear motor meets the performance requirements, operates efficiently, and provides reliable and consistent power transmission. It’s important to consult with gear motor manufacturers or experts to determine the most suitable gear motor based on the specific application’s needs.

China Best Sales Low Speed Gear Electric DC Motor with Angle Gearbox Micro Full Metal Gearbox Gear Motor DC   a/c vacuum pump		China Best Sales Low Speed Gear Electric DC Motor with Angle Gearbox Micro Full Metal Gearbox Gear Motor DC   a/c vacuum pump
editor by CX 2023-11-30

China Hot selling Kpc Series 3 Phase Electric Motor Gear Reducer Helical Gearbox double helical gearbox

Product Description

Product Description

KPC Series helical gearbox is a new generation product which designed basing on the modular system, It can be connected respectively with motors such as IEC standard motor, brake motor, explosion-proof motor, frequency motor, servo motor and so on. it has 4 types(),power from 0.12kw to 4.0kw, ratio from 3.66 to 58.09, Max torque from 120Nm to 500Nm.It can be connect discretionary(foot or flange) and use multi-mounting positions accordingly. This product is widely used in textile, foodstuff, beverage,tobacco, logistics industrial fields,etc.

        Product Characteristics

  1. Modular construction
  2. High efficiency
  3. Precise grinding, low noise
  4. Compact structural design
  5. Univeral mounting
  6. Aluminium housing, light in weight
  7. Carbonize and grinding hardened gears, durable
  8. Multi-structure, can be combined in different forms to meet various transmission condition

       Installation:
      1.Foot mounted
      2.Output Flange mounted
      3.B14 Flange mounted

      Models:
      1.KPC..P(Foot-mounted): KPC01P,KPC02P,KPC03P,KPC04P
      2.KPCF..P(Output Flange-mounted): KPCF01P,KPCF02P,KPCF03P,KPCF04P
      3.KPCZ..P(B14 Flange-mounted): KPCZ01P,KPCZ02P,KPCZ03P,KPCZ04P

Detailed Photos

Product Parameters

GEARBOX SELECTING TABLES  
KPC01..       n1=1400r/min       120Nm  
n2 M2max Fr2 i Proportion 63B5 71B5/B14 80B5/B14 90B5/B14  
[r/min] [Nm] [N]  
26 120 2600 53.33  160/3          
31 120 2600 45.89  413/9          
35 120 2600 40.10  3248/81          
39 120 2560 35.47  532/15          
49 120 2380 28.50  770/27          
59 120 2230 23.56  212/9          
71 120 2100 19.83  119/6          
78 90 2030 17.86  1357/76          
96 120 1900 14.62  658/45          
101 90 1860 13.80* 69/5          
118 120 1770 11.90  2464/207          
143 120 1660 9.81  1148/117          
153 80 1630 9.17  1219/133          
181 80 1540 7.72  1173/152          
246 70 1390 5.69  1081/190          
302 70 1290 4.63  88/19          
366 70 1210 3.82  943/247          
KPC02..       n1=1400r/min       200Nm  
n2 M2max Fr2 i Proportion 63B5 71B5/B14 80B5/B14 90B5/B14  
[r/min] [Nm] [N]  
26 200 4500 54.00* 54/1          
30 200 4500 46.46* 3717/80          
34 200 4500 40.60* 203/5          
39 200 4270 35.91* 3591/100          
48 200 3970 28.88* 231/8          
59 200 3730 23.85* 477/20          
70 200 3520 20.08* 3213/160          
82 140 3330 17.10  3009/176          
95 200 3180 14.81* 2961/200          
106 140 3060 13.21  2907/220          
116 200 2970 12.05  1386/115          
141 200 2780 9.93  2583/260          
159 120 2670 8.78  2703/308          
189 120 2520 7.39  2601/352          
257 100 2280 5.45  2397/440          
316 100 2120 4.43  102/23          
383 80 1990 3.66  2091/572          
KPC03..       n1=1400r/min         300Nm
n2 M2max Fr2 i Proportion 71B5/B14 80B5/B14 90B5/B14 100B5/B14 112B5/B14
[r/min] [Nm] [N]
24 300 6000 58.09  639/11          
28 300 6000 50.02  2201/44          
32 300 6000 43.75  4331/99          
36 300 6000 38.73  426/11          
40 300 5860 34.62  4189/121          
49 300 5480 28.30  4047/143          
64 280 5571 21.78  1917/88          
81 280 4660 17.33  3621/209          
93 260 4440 15.06  497/33          
113 260 4160 12.37  1633/132          
136 240 3910 10.28  3053/297          
177 180 3590 7.93  1269/160          
222 180 3320 6.31  2397/380          
255 150 3170 5.48  329/60          
311 150 2970 4.50  1081/240          
374 150 2790 3.74  2571/540          
KPC04..       n1=1400r/min       500Nm  
n2 M2max Fr2 i Proportion 80B5/B14 90B5/B14 100B5/B14 112B5/B14  
[r/min] [Nm] [N]
24 500 8000 58.09  639/11          
28 500 8000 50.02  2201/44          
32 500 8000 43.75  4331/99          
36 500 8000 38.73  426/11          
40 500 7950 34.62  4189/121          
49 500 7430 28.30  4047/143          
64 480 6810 21.78  1917/88          
81 480 6310 17.33  3621/209          
93 460 6571 15.06  497/33          
113 460 5640 12.37  1633/132          
136 440 5300 10.28  3053/297          
177 260 4860 7.93  1269/160          
222 260 4510 6.31  2397/380          
255 230 4300 5.48  329/60          
311 230 4030 4.50  1081/240          
374 200 3780 3.74 2571/540          

Outline Dimension:

Company Profile

About our company:
We are a professional reducer manufacturer located in HangZhou, ZHangZhoug province.Our leading products is  full range of RV571-150 worm reducers , also supplied hypoid helical gearbox, PC units, UDL Variators and AC Motors.Products are widely used for applications such as: foodstuffs, ceramics, packing, chemicals, pharmacy, plastics, paper-making, construction machinery, metallurgic mine, environmental protection engineering, and all kinds of automatic lines, and assembly lines.With fast delivery, superior after-sales service, advanced producing facility, our products sell well  both at home and abroad. We have exported our reducers to Southeast Asia, Eastern Europe and Middle East and so on.Our aim is to develop and innovate on basis of high quality, and create a good reputation for reducers.

Packing information:Plastic Bags+Cartons+Wooden Cases , or on request
We participate Germany Hannver Exhibition-ZheJiang PTC Fair-Turkey Win Eurasia

Logistics

We can dispatch goods by sea, by train, by air according to customer instruction

After Sales Service

1.Maintenance Time and Warranty:Within 1 year after receiving goods.
2.Other ServiceIncluding modeling selection guide, installation guide, and problem resolution guide, etc.

FAQ

1.Q:Can you make as per customer drawing?
A: Yes, we offer customized service for customers accordingly. We can use customer’s nameplate for gearboxes.

2.Q:What is your terms of payment ?
   A: 30% deposit before production,balance T/T before delivery.

3.Q:Are you a trading company or manufacturer?
   A:We are a manufacurer with advanced equipment and experienced workers.

4.Q:What’s your production capacity?
   A:8000-9000 PCS/MONTH

5.Q:Free sample is available or not?
   A:Yes, we can supply free sample if customer agree to pay for the courier cost

6.Q:Do you have any certificate?
   A:Yes, we have CE certificate and SGS certificate report.

Contact information:
Ms Lingel Pan
For any questions just feel free ton contact me. Many thanks for your kind attention to our company!

Application: Motor, Machinery, Marine, Agricultural Machinery, Industry
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Double-Step
Samples:
US$ 45/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

helical gearbox

Helical Gearbox

Generally, a helical gearbox consists of two gears. The two gears have cut teeth and are inserted into one another. These two gears work together to transmit torque and speed. This type of gearbox is used in a wide variety of applications.

Working principle

Besides being cheaper to make, helical gears have several advantages over straight-cut spur gears. Firstly, they offer a smoother operation, less vibration, and lower noise levels. They also transmit larger loads than spur gears. These gears are used in a variety of industries, such as food processing, plastic industries, and oil industries.
Another important feature of helical gears is the smooth and gradual engagement of teeth. This helps them function more smoothly, especially when working under heavy loads. This process reduces shock and backlash, and also reduces wear.
In addition to this, the helix angle is a variable that can be adjusted to suit the application. The angle is usually either left or right, and can vary based on the view.
Helical gears are usually used in enclosed gear drives, such as conveyors, blowers, and elevators. They offer a smoother operation, which makes them ideal for applications that require quiet operation. However, helical gears are less efficient at transmitting power than spur gears.
The relative contact stress (RCS) calculated for a helical gear is similar to that of a spur gear. However, the volume Vi, which is a helix-dependent quantity, is different. This volume is defined as the total volume of the helical pocket, calculated by integrating along the face width. The volume of a generic pocket is larger than that of a helical pocket without a helix.
In addition, the contact ratio is reduced. This is due to the fact that two teeth are not parallel to each other. A thick oil film prevents the teeth from making contact. This film also cools the gear tooth surfaces.
The service factor is a number that takes into account the conditions under which a gear is used. It is usually a ratio between the maximum torque and the torque produced.

Efficiency

During a recent gearbox measurement campaign, 13 commercial gearboxes were extensively tested. Efficiency was measured at nominal torque and power. The resulting efficiency maps presented in this paper show that the efficiency of each gearbox is fairly similar.
The efficiency of a gearbox depends on the gears’ teeth and the ratio between them. The lower the ratio, the higher the efficiency.
Efficiency is also affected by the load torque. The higher the load torque, the lower the efficiency. This is especially true for gearboxes with high ratios.
The power loss is also affected by the contact and overlap ratios. For gearboxes with high ratios, the difference between the efficiency of the catalog and model-based efficiency is greater than for low-ratio gearboxes. Fortunately, improvements in lubrication are closing this gap.
The helical gearbox is the most effective gearbox in the industry. It transfers motion between parallel configurations and has less noise than spur gears. These gears engage gently and smoothly, so they are less prone to wear and tear. They also allow for greater power carrying capacity.
Although helical gears are effective, they are more expensive than traditional gears. However, the cost savings can be significant over time. It is important to consider the advantages of a helical gearbox before choosing a gearbox for your application.
When comparing the efficiency of a helical gearbox to that of a worm gearbox, the worm gearbox is more efficient. However, the difference in efficiency is not as great as many other gearboxes.
The efficiency of a helical gearbox is also affected by the speed of the gears. The gearbox must have adequate lubrication for bearings. It is also important to consider the space requirements in the drive line.helical gearbox

Applications

helical gearbox applications are widespread and they are used in many industries. Some of the applications include the printing industry, the rubber industry, the plastics industry, the cement industry, the earth-moving industry, and the chemical industry.
helical gearboxes are also used for conveyors and elevators. They are very durable and they can carry larger loads. They are also quieter than straight cuts. They are also used in many automotive transmissions.
helical gearboxes transmit power between two parallel shafts. They are a good substitute for spur gears. They are compact and they reduce vibration and noise. They are also very durable and they can work in non-parallel shafts.
The most common application is in the automotive industry. Helical gearboxes are also used in other industries. They are very useful in elevators, conveyors, and other heavy industrial settings. They also provide a high level of speed reduction and they are commonly used in automation control systems. They are also used in the mining industry and the cement industry.
helical gearboxes can be fabricated with various modifications. This is important because some industries may require different gearboxes.
Helical gears have a higher number of teeth. This leads to less wear and tear. They are also less noisy than spur gears. Their ability to generate a large thrust force is what makes them ideal for high-speed applications. They are also able to distribute load among several axes. They are also used in high shock and vibration applications.
helical gearboxes work at a higher efficiency than spur gears. However, the manufacturing costs for helical gears are greater than for spur gears.
helical gearboxes also have the advantage of transferring power between right-angle shafts. They can work in conjunction with crossed axis gears, which eliminate shock loading.

Variations

Several variations of helical gearbox are available in the market for different industries. They are widely used in automobile transmissions and other industries. They are quieter than spur gears. They are also durable and are highly efficient. However, they can cause higher friction and wear.
Helical gears are made of teeth that twist around a cylindrical gear body at an angle. The angle at which the gear teeth are cut is called the helix angle. The helix angle can be adjusted to fit the gear and its surroundings.
The helix angle also determines how much axial force the gear produces. A larger helix angle will generate more axial force. This increase in axial force must be absorbed by the bearings. The pressure angle also has a direct impact on the normal force and curvature radii of the tooth.
Helical gears can be mounted in parallel or crossed configuration. Helical gears connected in parallel require the same pitch and pressure angle to work correctly. Helical gears connected in crossed configuration can operate more quietly and smoothly than spur gears. However, they can also be used to transmit higher torques.
Helical gears are also available in single and double helical designs. Single helical gears are produced with the same tools and equipment as spur gears. Unlike spur gears, single helical gears have more surface contact. They are also better for precision drives.
Double helical gears are also called herringbone gears. They are produced by cutting a groove between two teeth. They can eliminate axial forces and are also used to provide high load carrying capacity.
Helical gears are commonly used for low power transmission applications. They also provide an alternative for connecting parallel and non-parallel shafts. They are also used in high speed applications.helical gearbox

Tool tip radius

Among the many parameters that are used in a helical gearbox design, the tooth tip radius is probably the most important, albeit only because it is one of the least intuitive. The best way to estimate the diameter of a helical gear tooth is to use a tooth reference profile as the basis for the calculation. A similar procedure is used to calculate the helix angle. A tool tip that is too small will result in a tooth that undercuts, which is a problem if you have a gear that has a high number of teeth and you want to reduce the chance of tooth failure.
For the gear buffs, there are many helical gearbox tools and processes, the tip diameter being but one of them. Luckily for gear design geeks, there is a lot more to the helical gearbox than meets the eye. For example, a helical gear tooth is a three-dimensional surface, so its shape and function can be computed mathematically or numerically.
In addition to a tooth tip that flies by the seat of your pants, the helical gearbox is also the product of a manufacturing process. The main culprit is the profile shift, which is the distance between the gear pitch diameter and the datum line of the cutting tool. While a gear designer could choose to ignore this issue, it is often a design consideration for the benefit of maximizing contact ratios. This means that the gear teeth must be able to withstand the torque of their respective gear trains.
A helical gear is a geometric package, and the best way to package the gears is to minimize tooth bending strength while maximizing tooth bending stiffness. To do this, you must limit the thickness of your tooth tip. This is usually accomplished with a tooth profile that is shaped to match the tooth contour of the gear it is intended to replace.
China Hot selling Kpc Series 3 Phase Electric Motor Gear Reducer Helical Gearbox   double helical gearboxChina Hot selling Kpc Series 3 Phase Electric Motor Gear Reducer Helical Gearbox   double helical gearbox
editor by CX 2023-10-20

China 14-280RPM Precision 3 1 Ratio Electric Motor Reduction Precision Price Synchro Gearbox cycloidal gearbox

Applicable Industries: Building Material Shops, Manufacturing Plant, Machinery Repair Shops, Food & Beverage Factory, Farms, Printing Shops, Construction works , Energy & Mining, Food & Beverage Shops, Other
Weight (KG): 15 KG
Customized support: OEM, ODM
Gearing Arrangement: Helical
Output Torque: 2.6-1195N.M
Input Speed: 1400rpm(4pole),others
Output Speed: 14-280rpm
Gear: Helical
Color: RAL7031 Grey
Housing Material: Iron Casting
Oil: Gear Oil
Customization: Acceptable
MOQ: More than 1 pc
Package: Wooden Case
Certificate: ISO9001:2000
Motor Connection: Flange or Direct Connection
Mounting Type: Foot Mounted or Flange Mounted
Packaging Details: standard export packing and wood pallets packing
Port: ZheJiang or HangZhou

Main Products

TypeInline Helical Gearbox / Reducer
ModelWR17~WR167
Mounting PositionFlange, Small Copper And Plastic Separator Machine Mini Cable Wire Granulator Machine For Electric Cable Recycling On Sale hollow shaft, CZPT shaft
Efficiency94%~98%(depends on the transmission stage)
MaterialHousing: HT250 high strength cast iron
Gear: 20CrMnTi
Surface hardness of gearsHRC58~62
Input/output shaft material40Cr
Machining precision of gearsAccurate grinding, 6 grade
Warranty1 Year
Input Power0.09kw,0.18kw,1.1KW,1.5KW,2.2KW,3KW,4KW,5.5KW,7.5KW,11Kw and so on.
UsagesIndustrial Machine: Food Stuff, Factory Supply Small MOQ CZPT nylon Worm Gear Plastic worm Gear Ceramics, CHEMICAL, Packing, Dyeing,Wood working, Glass.
IEC FlangeIEC standard flange
Lubricant oilGear oil
>Click Here To Contact< Product Advantages Enterprise Strength Certificate Global Exhibition Customer Comments FAQ 1. How to choose a gearbox which meets our requirement?You can refer to our catalogue to choose the gearbox or we can help to choose when you providethe technical information of required output torque, output speed and motor parameter etc. 2. What information shall we give before placing a purchase order?a) Type of the gearbox, ratio, input and output type, input flange, Geely KingKong gearbox Geely Jingang gearbox 1.5MT mounting position, and motor informationetc.b) Housing color.c) Purchase quantity.d) Other special requirements. 3. What industries are your gearboxes being used?Our gearboxes are widely used in the areas of textile, food processing, beverage, chemical industry,escalator,automatic storage equipment, metallurgy, tabacco, environmental protection, logistics and etc. 4. Doyou sell motors?We have stable motor suppliers who have been coperating with us for a long-time. They can provide motorswith high quality. >Return Home< Forging Yokes Iso Certified Agriculture Machine Parts Flexible T50 21 Teeth PTO Drive Shaft

gearbox

What Is a Gearbox?

There are several factors to consider when choosing a gearbox. Backlash, for example, is a consideration, as it is the angle at which the output shaft can rotate without the input shaft moving. While this isn’t necessary in applications without load reversals, it is important for precision applications involving load reversals. Examples of these applications include automation and robotics. If backlash is a concern, you may want to look at other factors, such as the number of teeth in each gear.

Function of a gearbox

A gearbox is a mechanical unit that consists of a chain or set of gears. The gears are mounted on a shaft and are supported by rolling element bearings. These devices alter the speed or torque of the machine they are used in. Gearboxes can be used for a wide variety of applications. Here are some examples of how gearboxes function. Read on to discover more about the gears that make up a gearbox.
Regardless of the type of transmission, most gearboxes are equipped with a secondary gear and a primary one. While the gear ratios are the same for both the primary and secondary transmission, the gearboxes may differ in size and efficiency. High-performance racing cars typically employ a gearbox with two green and one blue gear. Gearboxes are often mounted in the front or rear of the engine.
The primary function of a gearbox is to transfer torque from one shaft to another. The ratio of the driving gear’s teeth to the receiving member determines how much torque is transmitted. A large gear ratio will cause the main shaft to revolve at a slower speed and have a high torque compared to its counter shaft. Conversely, a low gear ratio will allow the vehicle to turn at a lower speed and produce a lower torque.
A conventional gearbox has input and output gears. The countershaft is connected to a universal shaft. The input and output gears are arranged to match the speed and torque of each other. The gear ratio determines how fast a car can go and how much torque it can generate. Most conventional transmissions use four gear ratios, with one reverse gear. Some have two shafts and three inputs. However, if the gear ratios are high, the engine will experience a loss of torque.
In the study of gearbox performance, a large amount of data has been collected. A highly ambitious segmentation process has yielded nearly 20,000 feature vectors. These results are the most detailed and comprehensive of all the available data. This research has a dual curse – the first is the large volume of data collected for the purpose of characterization, while the second is the high dimensionality. The latter is a complication that arises when the experimental gearbox is not designed to perform well.
gearbox

Bzvacklash

The main function of a gearhead is to multiply a moment of force and create a mechanical advantage. However, backlash can cause a variety of issues for the system, including impaired positioning accuracy and lowered overall performance. A zero backlash gearbox can eliminate motion losses caused by backlash and improve overall system performance. Here are some common problems associated with backlash in gearheads and how to fix them. After you understand how to fix gearbox backlash, you’ll be able to design a machine that meets your requirements.
To reduce gearbox backlash, many designers try to decrease the center distance of the gears. This eliminates space for lubrication and promotes excessive tooth mesh, which leads to premature mesh failure. To minimize gearbox backlash, a gear manufacturer may separate the two parts of the gear and adjust the mesh center distance between them. To do this, rotate one gear with respect to the fixed gear, while adjusting the other gear’s effective tooth thickness.
Several manufacturing processes may introduce errors, and reducing tooth thickness will minimize this error. Gears with bevel teeth are a prime example of this. This type of gear features a small number of teeth in comparison to its mating gear. In addition to reducing tooth thickness, bevel gears also reduce backlash. While bevel gears have fewer teeth than their mating gear, all of their backlash allowance is applied to the larger gear.
A gear’s backlash can affect the efficiency of a gearbox. In an ideal gear, the backlash is zero. But if there is too much, backlash can cause damage to the gears and cause it to malfunction. Therefore, the goal of gearbox backlash is to minimize this problem. However, this may require the use of a micrometer. To determine how much gearbox backlash you need, you can use a dial gauge or feeler gauge.
If you’ve been looking for a way to reduce backlash, a gearbox’s backlash may be the answer. However, backlash is not a revolt against the manufacturer. It is an error in motion that occurs naturally in gear systems that change direction. If it is left unaccounted for, it can lead to major gear degradation and even compromise the entire system. In this article, we’ll explain how backlash affects gears and how it affects the performance of a gearbox.

Design

The design of gearboxes consists of a variety of factors, including the type of material used, power requirements, speed and reduction ratio, and the application for which the unit is intended. The process of designing a gearbox usually begins with a description of the machine or gearbox and its intended use. Other key parameters to consider during gearbox design include the size and weight of the gear, its overall gear ratio and number of reductions, as well as the lubrication methods used.
During the design process, the customer and supplier will participate in various design reviews. These include concept or initial design review, manufacturing design validation, critical design review, and final design review. The customer may also initiate the process by initiating a DFMEA. After receiving the initial design approval, the design will go through several iterations before the finalized design is frozen. In some cases, the customer will require a DFMEA of the gearbox.
The speed increaser gearboxes also require special design considerations. These gearboxes typically operate at high speeds, causing problems with gear dynamics. Furthermore, the high speeds of the unit increase frictional and drag forces. A proper design of this component should minimize the effect of these forces. To solve these problems, a gearbox should incorporate a brake system. In some cases, an external force may also increase frictional forces.
Various types of gear arrangements are used in gearboxes. The design of the teeth of the gears plays a significant role in defining the type of gear arrangement in the gearbox. Spur gear is an example of a gear arrangement, which has teeth that run parallel to the axis of rotation. These gears offer high gear ratios and are often used in multiple stages. So, it is possible to create a gearbox that meets the needs of your application.
The design of gearboxes is the most complex process in the engineering process. These complex devices are made of multiple types of gears and are mounted on shafts. They are supported by rolling element bearings and are used for a variety of applications. In general, a gearbox is used to reduce speed and torque and change direction. Gearboxes are commonly used in motor vehicles, but can also be found in pedal bicycles and fixed machines.
gearbox

Manufacturers

There are several major segments in the gearbox market, including industrial, mining, and automotive. Gearbox manufacturers are required to understand the application and user industries to design a gearbox that meets their specific requirements. Basic knowledge of metallurgy is necessary. Multinational companies also provide gearbox solutions for the power generation industry, shipping industry, and automotive industries. To make their products more competitive, they need to focus on product innovation, geographical expansion, and customer retention.
The CZPT Group started as a small company in 1976. Since then, it has become a global reference in mechanical transmissions. Its production range includes gears, reduction gearboxes, and geared motors. The company was the first in Italy to achieve ISO certification, and it continues to grow into one of the world’s leading manufacturers of production gearboxes. As the industry evolves, CZPT focuses on research and development to create better products.
The agriculture industry uses gearboxes to implement a variety of processes. They are used in tractors, pumps, and agricultural machinery. The automotive industry uses gears in automobiles, but they are also found in mining and tea processing machinery. Industrial gearboxes also play an important role in feed and speed drives. The gearbox industry has a diverse portfolio of manufacturers and suppliers. Here are some examples of gearboxes:
Gearboxes are complex pieces of equipment. They must be used properly to optimize efficiency and extend their lifespan. Manufacturers employ advanced technology and strict quality control processes to ensure their products meet the highest standards. In addition to manufacturing precision and reliability, gearbox manufacturers ensure that their products are safe for use in the production of industrial machinery. They are also used in office machines and medical equipment. However, the automotive gearbox market is becoming increasingly competitive.

China 14-280RPM Precision 3 1 Ratio Electric Motor Reduction Precision Price Synchro Gearbox     cycloidal gearbox	China 14-280RPM Precision 3 1 Ratio Electric Motor Reduction Precision Price Synchro Gearbox     cycloidal gearbox
editor by Cx 2023-07-11

China supplier Tkm Series 90 Degree Helical Hypoid Gearbox with Aluminum Housing electric motor helical gearbox

Product Description

Product Description

KPM-KPB series helical-hypoid gearboxes are the new-generation product with a compromise of advanced technology both at home and abroad.This product is widely used in textile, foodstuff, beverage,tobacco, logistics industrial fields,etc.
Main Features:
(1) Driven by hypoid gears, which has big ratios.
(2) Large output torque, high efficiency(up to 92%), energy saving and environmental protection.
(3) High quality aluminum alloy housing, light in weight and non-rusting.
(4) Smooth in running and low in noise, and can work long time in dreadful conditions.
(5) Good-looking appearance, durable service life and small volume.
(6) Suitable for all round installation, wide application and easy use.
(7) KPM series can replace NMRV worm gearbox; KPB series can replace CZPT W series worm gearbox;
(8) Modular and multi-structure can meet the demands of various conditions.
 Main Material:
(1) Housing: aluminum alloy 
(2) Gear wheel: 20CrMnTiH1,carbonize & quencher heat treatment make the hardness of gears surface up to 56-62 HRC, retain carburization layers thickness between 0.3 and 0.5mm after precise grinding.

Detailed Photos

Product Parameters

Model Information:

GEARBOX SELECTING TABLES    
KPM50..           n1=1400r/min       160Nm    
                         
Model i i n2 M2max Fr2 63B5 71B5/B14 80B5/B14 90B5/B14    
nominal actual [r/min] [Nm] [N]    
3 Stage    
KPM50C   300 294.05 4.8 130  4100   N/A N/A N/A    
KPM50C   250 244.29 5.8 130  4100   N/A N/A N/A    
KPM50C   200 200.44 7.0  130  4100   N/A N/A N/A    
KPM50C   150 146.67 9.6 160  4000   N/A N/A N/A    
KPM50C   125 120.34 12 160  3770     N/A N/A    
KPM50C   100 101.04 14 160  3560     N/A N/A    
KPM50C   75 74.62 19 160  3220     N/A N/A    
KPM50C   60 62.36 23 160  3030     N/A N/A    
KPM50C   50 52.36 27 160  2860     N/A N/A    
2 Stage    
KPM50B   60 58.36 24 130  2960     N/A N/A    
KPM50B   50 48.86 29 130  2790       N/A    
KPM50B   40 40.09 35 130  2610       N/A    
KPM50B   30 29.33 48 160  2350       N/A    
KPM50B   25 24.07 59 160  2200            
KPM50B   20 20.21 70 160  2080            
KPM50B   15 14.92 94 160  1880            
KPM50B   12.5 12.47 113 160  1770            
KPM50B   10 10.47 134 160  1670            
KPM50B   7.5 7.73 182 160  1510            
                         
                         
KPM63..,KPB63..           n1=1400r/min       180Nm    
                         
Model i i n2 M2max Fr2 63B5 71B5/B14 80B5/B14 90B5/B14    
nominal actual [r/min] [Nm] [N]    
3 Stage    
KPM63C KPB63C 300 302.50  4.7 160  4800   N/A N/A N/A    
KPM63C KPB63C 250 243.57  5.8 160  4800   N/A N/A N/A    
KPM63C KPB63C 200 196.43  7.2  160  4800     N/A N/A    
KPM63C KPB63C 150 151.56  9.3 180  4650     N/A N/A    
KPM63C KPB63C 125 122.22  12 180  4330     N/A N/A    
KPM63C KPB63C 100 94.50  14 180  4070     N/A N/A    
KPM63C KPB63C 75 73.33  20 180  3650       N/A    
KPM63C KPB63C 60 63.33  23 180  3480       N/A    
KPM63C KPB63C 50 52.48  27 180  3270       N/A    
2 Stage    
KPM63B KPB63B 60 60.50  24 160  3430       N/A    
KPM63B KPB63B 50 48.71  29 160  3190            
KPM63B KPB63B 40 39.29  36 160  2970            
KPM63B KPB63B 30 30.31  47 180  2720            
KPM63B KPB63B 25 24.44  58 180  2530 N/A          
KPM63B KPB63B 20 18.90  70 180  2380 N/A          
KPM63B KPB63B 15 14.67  96 180  2130 N/A N/A        
KPM63B KPB63B 12.5 12.67  111 180  2030 N/A N/A        
KPM63B KPB63B 10 10.50  134 180  1910 N/A N/A        
KPM63B KPB63B 7.5 7.60  185 180  1710 N/A N/A        
                         
                         
KPM75..,KPB75..           n1=1400r/min           350Nm
                         
Model i i n2 M2max Fr2 63B5 71B5 80B5/B14 90B5/B14 100B5/B14 112B5/B14
nominal actual [r/min] [Nm] [N]
3 Stage
KPM75C KPB75C 300 297.21  4.8 300  6500     N/A N/A N/A N/A
KPM75C KPB75C 250 240.89  5.9 300  6500     N/A N/A N/A N/A
KPM75C KPB75C 200 200.66  7.0  300  6500     N/A N/A N/A N/A
KPM75C KPB75C 150 149.30  9.3 350  6500       N/A N/A N/A
KPM75C KPB75C 125 121.00  12 350  5980       N/A N/A N/A
KPM75C KPB75C 100 100.80  15 350  5520       N/A N/A N/A
KPM75C KPB75C 75 79.40  19 350  5040         N/A N/A
KPM75C KPB75C 60 62.43  23 350  4730 N/A       N/A N/A
KPM75C KPB75C 50 49.18  29 350  4370 N/A       N/A N/A
2 Stage
KPM75B KPB75B 60 59.44  24 300  4660 N/A       N/A N/A
KPM75B KPB75B 50 48.18  30 300  4340 N/A       N/A N/A
KPM75B KPB75B 40 40.13  35 300  4080 N/A         N/A
KPM75B KPB75B 30 29.86  47 350  3720 N/A N/A       N/A
KPM75B KPB75B 25 24.20  56 350  3500 N/A N/A        
KPM75B KPB75B 20 20.16  71 350  3230 N/A N/A        
KPM75B KPB75B 15 15.88  93 350  2950 N/A N/A        
KPM75B KPB75B 12.5 12.49  113 350  2770 N/A N/A N/A      
KPM75B KPB75B 10 9.84  143 350  2550 N/A N/A N/A      
KPM75B KPB75B 7.5 7.48  188 350  2330 N/A N/A N/A      
                         
                         
KPM90..,KPB86..           n1=1400r/min           500Nm
                         
Model i i n2 M2max Fr2 63B5 71B5 80B5/B14 90B5/B14 100B5/B14 112B5/B14
nominal actual [r/min] [Nm] [N]
3 Stage
KPM90C KPB86C 300 297.21  4.8 450  6500     N/A N/A N/A N/A
KPM90C KPB86C 250 240.89  5.9 450  6500       N/A N/A N/A
KPM90C KPB86C 200 200.66  7.0  450  6500       N/A N/A N/A
KPM90C KPB86C 150 151.20  9.3 500  6500       N/A N/A N/A
KPM90C KPB86C 125 125.95  12 500  5980       N/A N/A N/A
KPM90C KPB86C 100 99.22  15 500  5520 N/A       N/A N/A
KPM90C KPB86C 75 75.45  19 500  5040 N/A       N/A N/A
KPM90C KPB86C 60 62.43  23 500  4730 N/A       N/A N/A
KPM90C KPB86C 50 49.18  29 500  4370 N/A       N/A N/A
2 Stage
KPM90B KPB86B 60 59.44  24 450  5890 N/A         N/A
KPM90B KPB86B 50 48.18  30 450  5500 N/A         N/A
KPM90B KPB86B 40 40.13  35 450  5170 N/A N/A        
KPM90B KPB86B 30 30.24  47 500  4710 N/A N/A        
KPM90B KPB86B 25 25.19  56 500  4430 N/A N/A        
KPM90B KPB86B 20 19.84  71 500  4090 N/A N/A N/A      
KPM90B KPB86B 15 15.09  93 500  3730 N/A N/A N/A      
KPM90B KPB86B 12.5 12.49  113 500  3510 N/A N/A N/A      
KPM90B KPB86B 10 9.84  143 500  3240 N/A N/A N/A      
KPM90B KPB86B 7.5 7.48  188 500  2950 N/A N/A N/A      

Outline Dimension:

Company Profile

About our company:
We are a professional reducer manufacturer located in HangZhou, ZHangZhoug province.Our leading products is  full range of RV571-150 worm reducers , also supplied hypoid helical gearbox, PC units, UDL Variators and AC Motors.Products are widely used for applications such as: foodstuffs, ceramics, packing, chemicals, pharmacy, plastics, paper-making, construction machinery, metallurgic mine, environmental protection engineering, and all kinds of automatic lines, and assembly lines.With fast delivery, superior after-sales service, advanced producing facility, our products sell well  both at home and abroad. We have exported our reducers to Southeast Asia, Eastern Europe and Middle East and so on.Our aim is to develop and innovate on basis of high quality, and create a good reputation for reducers.

 Packing information:Plastic Bags+Cartons+Wooden Cases , or on request
We participate Germany Hannver Exhibition-ZheJiang PTC Fair-Turkey Win Eurasia

Logistics

After Sales Service

1.Maintenance Time and Warranty:Within 1 year after receiving goods.
2.Other ServiceIncluding modeling selection guide, installation guide, and problem resolution guide, etc.

FAQ

1.Q:Can you make as per customer drawing?
A: Yes, we offer customized service for customers accordingly. We can use customer’s nameplate for gearboxes.
2.Q:What is your terms of payment ?
A: 30% deposit before production,balance T/T before delivery.
3.Q:Are you a trading company or manufacturer?
A:We are a manufacurer with advanced equipment and experienced workers.
4.Q:What’s your production capacity?
A:8000-9000 PCS/MONTH
5.Q:Free sample is available or not?
A:Yes, we can supply free sample if customer agree to pay for the courier cost
6.Q:Do you have any certificate?
A:Yes, we have CE certificate and SGS certificate report.

Contact information:
Ms Lingel Pan
For any questions just feel free ton contact me. Many thanks for your kind attention to our company!

 

 

Application: Motor, Machinery, Marine, Agricultural Machinery, Industry
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction
Layout: Right-Angle
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Two Stage-Three Stage
Samples:
US$ 45/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

helical gearbox

Helical Gearbox

Using a helical gearbox can greatly improve the accuracy of a machine and reduce the effects of vibration and shaft axis impact. A gearbox is a circular machine part that has teeth that mesh with other teeth. The teeth are cut or inserted and are designed to transmit speed and torque.

Sliding

Among the many types of gearboxes, the helical gearbox is the most commonly used gearbox. This is because the helical gearbox has a sliding contact. The contact between two gear teeth begins at the beginning of one tooth and progresses to line contact as the gear rotates.
Helical gears are cylindrical gears with teeth cut at an angle to the axis. This angle enables helical gears to capture the velocity reversal at the pitch line due to the sliding friction. This leads to a much smoother motion and less wear. Moreover, the helical gearbox is more durable and quieter than other gearboxes.
Helical gears are divided into two categories. The first group comprises of crossed-axis helical gears, commonly used in automobile engine distributor/oil pump shafts. The second group comprises of zero-helix-angle gears, which do not produce axial forces. However, they do create heat, which causes loss of efficiency.
The helical gearbox configuration is often confounded, which results in higher working costs. In addition, the helical gearbox configuration does not have the same torque/$ ratio as zero-helix angle planetary gears.
When designing gears, it is important to consider the effects of gear sliding. Sliding can lead to friction, which can cause loss of power transmission. It also leads to uneven load distribution, which decreases the loadability of the helical planetary gearbox.
In addition, the mesh stiffness of helical gears is commonly ignored by researchers. An analytical model for the mesh stiffness of helical gears has been proposed.

Axial thrust forces

Several options are available for axial thrust forces in helical gearboxes. The most obvious is to use a double helical gear to offset the force component. Another option is to use a thrust bearing with a lower load carrying capacity. This becomes a sacrificial component.
In order to transmit a force, it must be distributed along the contact line. This force is the sum of tangential, radial and axial force components. All these components must be transferred from the source to the output. This is a complex process that involves the use of gears.
The axial force component must be transferred through the gears. The resultant force is then divided into orthogonal components and divided into the thrust directions. The radial force component is from the contact point to the driven gear center.
The axial force component is also determined by the size of the gear’s pitch diameter. A larger pitch diameter results in a greater bearing moment. Similarly, a larger gear ratio will produce a higher torque transmission.
It should be noted that the axial force component is only a small part of the total force. The normal force is distributed along the contact line.
The double helical gear is also not a perfect duplicate of the herringbone gear. It has two equal halves. It is used interchangeably with the herringbone gear. It also has the same helix angle.helical gearbox

Reduced impact on the shaft axis

Increasing the helix angle of a gear pair will reduce resonance effects on the shaft axis of a helical gearbox. However, this will not reduce the overall vibration in the gearbox. In fact, it will increase the vibration. This can lead to serious fatigue faults in the drive train.
This is because the helix angle has an effect on the contact line between two teeth. As the helix angle increases, the length of the contact line decreases. In addition, it has an effect on the normal force and curvature radii of the teeth. The pressure angle also affects the curvature radii.
Helical gears have several advantages over spur gears. These advantages include: lower vibration, NVH (noise, vibration and harshness) characteristics, and smooth operation under heavy loads. They also have better torque capability. However, they produce higher friction. They also require unique approaches to control their thrust forces.
The first step in reducing resonance effects is to regulate the meshing frequency of the helical gear stage. This can be done by varying the shift factors in the gear. If the shift factors are too large, then the gear will experience resonance effects. The helix angle is also affected by the gear’s shift factors. It is therefore important to control the gear’s geometry in order to reduce the resonance effects.
Next, the effects of the web structure and rim thickness on the root stress of the gear are examined. These are measured by strain gage. The results indicate that the maximum root stress is obtained when the worst meshing position is reached.

Quieter operation

Compared to spur gears, helical gears are much quieter in operation. This is due to their larger teeth. Aside from this, they have a higher load-carrying capacity. They also run smoother and have a higher speed capability. Helical gears are also a good substitute for spur gears.
The most significant parameter relating to noise reduction is the gear contact ratio. It ranges from below 1 to more than 10 and is determined by the number of teeth intersecting a parallel shaft line at the pith circle. It is also a good indicator of the level of noise reduction that helical gears provide.
In addition, helical gears have a lower impulse flexure than spur gears. This is because the contact point slides along the helical surface of each tooth. This also adds internal damping to the gear system.
While helical gears are less noisy than spur gears, they do have a high level of wear and tear. This can affect the performance of the gear. However, it is possible to improve the smoothness of the tooth surface by grinding. In addition, running the gears in oil can also help improve the smoothness of the tooth surface.
There are many industries that use helical gears. For example, the automotive industry uses them in their transmissions. They also are used in the agricultural industry. They are often used in heavy trucks.
Helical gears are also known to generate less heat and are quieter than other gears. They can also deliver parallel power transfers between parallel or non-parallel shafts.

Improved accuracy

Increasing the accuracy of a helical gearbox is the key to its operation and reliability. The accuracy of the gearbox is dependent on several features. Among the most important are the profile and lead. Moreover, the power requirements of a gear drive should be taken into consideration.
The profile is the most sensitive feature of a helical gear. If the profile is not symmetric, the gear will run with a noisy spur gear. In addition, the profile is also the most sensitive to lead.
A helical gearbox plays a key role in the power transmission of industrial applications. However, the heavy duty operating conditions make it susceptible to a variety of faults.
A helical gearbox’s performance depends on the accuracy of the individual gears. This is accomplished by minimizing the backlash. A common way to reduce backlash is to approach all target positions from a common direction. This approach also reduces transmission noise.
The accuracy of a helical gearbox can be improved by using a flexible electronic gearbox. This can reduce the degree of twist. Moreover, it can increase the accuracy of gear machining.
A helical gearbox with an electronic gearbox can increase the accuracy of twist compensation. It can also improve the linkage between B-axis, C-axis, and Z-axis. Moreover, the electronic gearbox will ensure the linkage relationship between Y-axis, Z-axis, and C-axis.
The accuracy of a helical Gearbox can be improved by calculating the position error of the gear train. Pitch deviation and helix angle deviation are two types of position error.helical gearbox

Reduced vibration

Using helical gearboxes can reduce vibration and noise. These gears are used in a variety of applications, including automotive transmissions. Moreover, these gears are quiet enough to operate in noise-sensitive applications.
Using CZPT software, three different gearbox housing designs are compared. The external dimensions and mass of each design are kept constant, but different quantities of longitudinal and transverse stiffeners are employed. The resulting models are then compared to experimental results. In addition, the free vibration response of these models is analyzed. The results are shown in Fig. 5.
In terms of noise reduction, the cellular model produces the lowest sound pressure level. However, the cross model produces the higher sound level. The cellular model also produces better peak to peak results.
The input-stage gear pair is the power source of the output-stage gear pair. The output-stage gear pair’s vibration is also studied. This includes a phase diagram and a frequency-domain diagram. The influence of the driving torque and the pinion’s velocity on the vibration is studied in a numerical manner. The time evolution of the normal force and the lubricant stiffness is also studied.
The input-stage pinion modification reduces the input-stage gear pair’s vibration. This reduction is achieved by adding dual bearing support to the input shaft.
China supplier Tkm Series 90 Degree Helical Hypoid Gearbox with Aluminum Housing   electric motor helical gearboxChina supplier Tkm Series 90 Degree Helical Hypoid Gearbox with Aluminum Housing   electric motor helical gearbox
editor by CX 2023-06-12

China Best Sales F107 Helical Gear Box Best Price Speed Reducer Manufacture AC Electric Transmission Gearbox planetary gearbox vs helical gearbox

Product Description

Product Advantages

F Series Gearbox Reducer

Product name 

F series of the gearbox hollow shaft model F107 oil seal transmission gearbox reducer reduction

Warranty

1 years

Applicable Industries

Manufacturing Plant

Weight (KG)

50KG

Customized support

OEM

Gearing Arrangement

Helical

Output Torque

1.8-2430N.M

Input Speed

1440, 2800,960,750

Output Speed

0.5 to 200

Place of Origin

China

Product name

F Series Parallel Shaft Gearbox Reducer

Application

Hardened Tooth Surface

Installation

Horizontal Type

Layout

Coaxial

Gear Shape

Helical

Production Capacity

800-1500PCS /Month

Type

Gear Reduction Motor

Color

Blue,Sliver or Customized

Packing

Wooden Box

Six advantages

Our Advantages


–Modular design, wide transmission ratio coverage, fine and reasonable distribution; Force reducer

–There are 11 types of frame specifications from F.27-F.157, and the transmission power range is 0.12KW-200KW;

–The shape design is suitable for omnidirectional universal installation configuration;

–The transmission is relatively accurate, covering the range of 3.77-281.71, and can be selected as required;

–The gear is grinded by high-precision gear grinding machine, with balanced transmission, low noise, and interstage efficiency of 98%;

–The transmission ratio of the F.R.reducer is extended to 31431, which is specially designed for special low-speed occasions

Editing and broadcasting of main materials

–Box: cast iron;

–Gear: low carbon alloy steel, carbonitriding treatment (after fine grinding, keep the tooth surface hardness of 60HRC, hard layer thickness>0.5mm);

–Flat key: 45 steel, with surface hardness above 45HRC.

Surface painting:

–Cast iron: sprayed with RAL7031 grey blue paint.

Parameter editing broadcast

Power: 0.18KW~200KW

Torque: 3N · m ~ 22500N · m

F series parallel shaft reducer

F series parallel shaft reducer

Output speed: 0.06~374r/minF series parallel shaft reducer [1]

Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Parallel
Gear Shape: Bevel Gear
Step: Single-Step
Type: Gear Reducer
Samples:
US$ 500/Piece
1 Piece(Min.Order)

|
Request Sample

helical gearbox

Why Choose a Helical Gearbox?

Choosing a helical gearbox is an important decision for any machine builder. It can help you to reduce maintenance costs, improve productivity and efficiency, and ensure that your equipment operates quietly and efficiently. In addition, it can also be compact in size and easy to install.

High productivity and efficiency

Compared to spur gears, helical gears have high productivity and efficiency. This is due to the fact that the helical gearbox is more effective at transferring power between right-angle configurations. Helical gears are also quieter. They also have the ability to tolerate a greater load. These gears are usually used in high-load applications, such as automotive transmission applications.
The basic features of helical gears include a slanted tooth face, a larger contact ratio, and a smoother performance. Helical gears are also less expensive than spur gears. They have more power carrying capacity, longer life, and are easier to maintain.
There are many factors that affect the efficiency of helical gearboxes. Some of them include the number of stages, reduction ratio, ambient conditions, and lubrication. They are also affected by the number of teeth.
Power loss in helical gears is mainly due to friction and heat. There are various approaches to minimize these losses. One approach is to analyse power losses using a numerical method.
Other factors that affect the efficiency of helical systems include speed, noise, and the number of teeth. The amount of power lost in gear mating is dependent on the load.

Low power consumption

Compared to other types of gearboxes, helical gearboxes have low power consumption. This is because they can tolerate more load, conduct smooth performance, and are quieter. They also require less oil changes and have a longer life span.
Helical gears have special teeth that are cut at an angle. The teeth are designed to engage gradually, rather than quickly. They can transfer power between parallel configurations and right-angle configurations.
Helical gearboxes are the most widely used gearboxes. They are also the most efficient. They can work at 98% efficiency. However, they are more expensive than spur gears. They can be packaged with oil-filled housings. They have less noise and require less maintenance. They can operate cooler, and have more torque capacity.
Helical gearboxes have two types: single and double helical gears. In the single type, the gears are perpendicular to the axis. They are usually used in automotive transmission applications. They can also be used in forward velocities. In the double type, the helical faces are next to each other.
Helical gears work at higher ratios, which increases their efficiency. They are also less noisy than spur gears. They are a good choice for applications that require high torque capacity. The basic efficiency of helical gearboxes ranges from 90% to 99.5%. They are also easier to operate and have a longer life span. They are suited to a wide range of applications.helical gearbox

Compact in size

Having a shiny new set of wheels is a nice change of pace. You get to sit in style and you get to drive it like the pro. The trick is finding the right one at the right time. Fortunately, there are plenty of companies who know how to build a high quality car that can be afforded by the average Joe. You’ll find all types of cars from sports coupes to hatchbacks. You’ll also find all types of drivers from the young professional to the seasoned veteran. You’ll also find all types of roads from main streets to back roads. There are even all types of parking spaces to choose from. With a bit of planning and some research, you’ll find the perfect fit for you and your family. You can’t help but wonder why you didn’t choose a vehicle with this many perks sooner. It’s a nice way to spend a night on the town, without having to worry about a parking fee. The next time you’re in the mood to take the family out to the country for a weekend in the great bluffs, you’ll know which ones to avoid.

Noise-free operation

Compared to spur gears, helical gears have better speed capability and quieter operation. However, helical gearboxes often have problems that stop their service. These faults result in increased productivity costs. These problems include fatigue, chipping tip, crack and missing tooth.
In this paper, we propose a novel signal processing scheme to detect gearbox faults at constant speed. The method involves the use of spectral subtraction (SS) to remove the spectral noise of a signal. This approach is widely used in speech signal processing. It is also used to estimate real-time noise information. The method was successfully applied to the analysis of gearbox faults.
The spectral subtraction technique is applied to the transmission error and to the side-band frequency feature. The side-band frequency is equal to the rotation frequency of the input shaft. A square envelope spectrum method is used to obtain the spectral feature. It was then used to obtain the corresponding fault signal. The method is then compared with experimentally measured noise data.
It is also important to note that the side-band feature is not stable in different noise levels. The optimal demodulation subband selection method is not obvious. However, the proposed method can obtain a stable amplitude value when SNR is low.
Another important factor that reduces noise is the overlap ratio. The overlap ratio is the sum of the transverse contact ratio and the face contact ratio. When the overlap ratio approaches one, the noise is minimized.

Improved performance at high speeds

Whether used in an industrial, automotive or power generation application, helical gearboxes provide a number of benefits over traditional spur gearing systems. These advantages include reduced noise, higher load capacity and smoother operation.
In an effort to reduce noise and improve performance at high speeds, Parker engineers developed a helical gearbox that runs quieter and produces 30-40% more torque than a conventionally modified gear. They also redesigned the entry and exit points of the gear tooth for increased efficiency and strength.
The high-speed helical geartrain has been tested at 5,000 hp power. The tests were performed in the High-Speed Helical Geartrain Test Facility at the NASA Glenn Research Center. The tests were conducted at four different design configurations and at multiple input shaft speeds. These tests included temperature increases from inlet to outlet, fling off temperatures, and power loss of the helical system.
The first step was to improve load distribution of the gear pair. This is done by modifying the microgeometry of each gear. In addition to modifying the microgeometry of each tooth, the length of the contact line was extended. This resulted in a higher tooth contact ratio.
Another option is to modify the straddle-mounted pin of the PGS. This is a complicated task because of spatial constraints. In order to determine whether the pin will have the desired effect, it needs to be tested in real-world tests.helical gearbox

Reduce maintenance costs

Compared to spur gears, helical gears have several advantages, such as less noise and vibration, greater load carrying capacity, and longer life. They also have a reduced maintenance cost.
Helical gears can be divided into two main types: single helical and crossed axis helicals. In the single helical type, two or three teeth connect at all times.
In crossed axis helicals, the shafts are inclined at a variety of angles. These gears are primarily used in non-perpendicular transmissions. They can have very low load carrying capacity, but they offer better strength and speed reduction than spur gears.
The double helical type has two mirrored rows of teeth that are angled. This type of gear is also known as a herringbone gear. It’s a design that’s ideal for non-perpendicular transmissions.
Helical gears are packaged in oil filled housings. They are a space saving gear reducer. They are used in automobile transmissions and other forward speeds. They are also used in industrial gearboxes.
Helical gears can be made of either solid or semi-solid materials. They can be sliced into an arbitrary number of cross sections. This allows the helix to be adjusted to suit the application.
It’s important to choose the right gear for your application. The gear’s design may include the number of teeth, lubricant type, surface treatment, and the tooth angle. It’s also important to choose the right lubricant, because it can affect the noise levels and the efficiency of the gear.
China Best Sales F107 Helical Gear Box Best Price Speed Reducer Manufacture AC Electric Transmission Gearbox   planetary gearbox vs helical gearboxChina Best Sales F107 Helical Gear Box Best Price Speed Reducer Manufacture AC Electric Transmission Gearbox   planetary gearbox vs helical gearbox
editor by CX 2023-05-18

China ZD High Performance High Quality Electric AC/DC Brush Or Brushless Gear Motor Planetary Gearbox Manufacture For Automation Solutions helical gears buy

Merchandise Description

Model Variety

        ZD Leader has a wide assortment of micro motor generation lines in the industry, like DC Motor, AC Motor, Brushless Motor, Planetary Equipment Motor, Drum Motor,  Planetary Gearbox, RV Reducer and Harmonic Gearbox and many others. Through technical innovation and customization, we help you generate outstanding application systems and supply flexible solutions for numerous industrial automation situations. 

• Product Choice

Our expert sales representive and specialized staff will pick the correct design and transmission options for your utilization rely on your certain parameters.

• Drawing Ask for

If you need far more solution parameters, catalogues, CAD or 3D drawings, make sure you contact us.

• On Your Need

We can modify common items or personalize them to fulfill your certain demands.

Range Of Gear Motor

Pleas click on the click on button to view more thorough specification:

 

Business Profile


/ Piece
|
1 Piece

(Min. Order)

###

Application: Universal, Industrial, Household Appliances, Equipment
Operating Speed: Constant Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Closed Type
Number of Poles: 2-6

###

Customization:
Available

|



/ Piece
|
1 Piece

(Min. Order)

###

Application: Universal, Industrial, Household Appliances, Equipment
Operating Speed: Constant Speed
Excitation Mode: Excited
Function: Control, Driving
Casing Protection: Closed Type
Number of Poles: 2-6

###

Customization:
Available

|


How to Choose a Helical Gearbox

Choosing the best helical gearbox is dependent on the type of application you want to use the gear for. You will need to consider the contact ratios and the total of profile shifts required.helical gearbox

Spur gears are more efficient than helical gears

Compared to helical gears, spur gears have straight teeth that are parallel to the axis of the gear. Because they are more efficient, spur gears are often used in low speed applications. However, helical gears are better for low-noise and high-speed applications. Despite their advantages, spur gears are also used in some devices.
Spur gears are not as resilient as other gears. They are less efficient at transmitting power over long distances, and they generate too much noise at high speeds. They also impose a radial load on bearings. They also produce significant vibration that can limit the maximum speed of operation.
Helical gears are better at transferring loads. They are used in a number of applications, including car transmissions, elevators, and conveyors. Helical gears also generate large amounts of thrust. They are also quieter than spur gears.
Unlike spur gears, helical gears use bearings to support their thrust load. They also have more teeth, so they can handle more load than spur gears. They can also be used in non-parallel shafts.
Helical gears are generally used in high-speed mechanical systems. They also have less wear on individual teeth and are quieter running than spur gears.
Helical gears are a refinement of spur gears. They are also used in the printing industry, elevators, and gearboxes for automobiles. They are often used in conjunction with a worm gear to distribute load. They have a higher speed capacity, but they are not as efficient as spur gears. They are used in some high-speed mechanical systems because they generate less noise and vibration.
Spur gears are commonly used in low-speed applications, like rack and pinion setups. Their design makes them more efficient at transmitting power, but they are less resilient than helical gears.
Design space is limited based on a required center distance, target gear ratio, and sum of profile shifts
Using statistically derived parameters, the authors performed a multi-objective optimization of the profile shift of two external cylindrical gears. The main objective of this study was to maximize efficiency and minimize the amount of power lost in the optimized space.
To do this, the authors used a multi-objective optimization algorithm that included all aspects of the optimal profile shift. The algorithm evaluates objective function over a series of generations to determine the best solution.
The multi-objective optimization algorithm was based on a verified optimization algorithm. This algorithm combines analytical pressure loads estimation with an effective method for calculating the deformations of the gear case. Using the aforementioned formulae, the authors were able to identify a feasible solution. The numerical calculations also showed that the corresponding specific sliding coefficients were perfectly balanced.
To identify the most efficient method for determining the profile shift, the authors selected the most efficient method based on the objectives of efficiency and mass. The efficiency objective was considered to be the largest given the small size of the resulting optimization space. This objective is useful in reducing wear failures.
helical gearbox
The largest thermal treatment of a cylindrical gear is case hardening. The ISO/TR 4467:1982 standard provides a practical guide for gears. The largest radii of the pinion and wheel are rb1 and rb2. The ratio of tooth width to base circle diameter of the pinion is normally set to less than 1.
Sliding velocity increases as the distance from the pitch point increases in the line of action
Deflections of the involute profile of a helical gear occur due to the load on the teeth. However, the optimum pressure angle for the gear is not known.
The correct pressure angle for a helical gear cannot be calculated without a surface model. Assuming the pressure is uniform over the profile, a pressure angle of 20deg would be a good bet. However, this would require a mathematical model that can be derived from the Archard wear equation.
In general, the pressure angle will be influenced by the diameter, as well as the gear mesh geometry. It is important to know the actual angle of a helical gear since this will affect the curvature of the profile, the normal force, and the radial force.
The best way to measure the pressure angle is to consider the theoretical pitch diameter. If the pitch diameter is small, then the actual angle will be smaller. This will cause a gap between the flanks. However, it can also cause the gear to deform, leading to unexpected working behavior.
One interesting tangent is the pitch plane, an imaginary plane tangent to the pitch surfaces. The pitch plane is the plane perpendicular to the axial plane of the gear cross section. It is usually used as a reference point to calculate the transverse pressure angle.
The working pressure angle is the angle of the pressure line of the gear mesh. This angle is the same as the reference pressure angle, but the length of the contact line is reduced.
The best way to calculate the working pressure angle is to use the pressure line of the gear mesh. This will give a more accurate value. The actual angle of the pressure line is also related to the transmission ratio. This ratio is usually given as the nominal ratio of angular velocities. The actual velocities will fluctuate about this ratio.

Undercut of a helical gear tooth root

Having an undercut at the pinion root can affect the distribution of load along the line of contact of helical gears. This can result in higher than nominal loads on some teeth and amplitude modulated noise.
The tooth root is affected by a number of factors, including the shape of the tooth cutting tool. The cutting tool must be designed to avoid an undercut without reducing the number of teeth. This is achieved by a process called profile shifting.
Profile shift occurs when the cutting tool changes depth, thereby preventing an undercut. It is often used in the manufacturing process to achieve a greater overlap ratio. The higher the overlap ratio, the less variation there is between the contact lines. This reduces the dynamic tooth loads and reduces noise.
The profile shift is most often associated with the cutting tool tip. This is the point where the involute profile exits the gear, before the tip begins to taper. The involute profile can be defined for every transverse section of the gear face width. The boundary point is a point of tangency between the involute and root profiles.
The involute of a circle is a common way to define a gear-tooth profile. The involute is the path traced by the point on the line when rolling on a circle. It is a useful feature for cylindrical involute gears.
The helix angle is also important to the helical gear. It allows for greater contact capacity and increases the bending capacity of the gear. It must be included in specifications for helical teeth. The angle must be measurable and include the (+-) sign.
The bending strength of a tooth depends on the shape of the root. A large undercut reduces the strength of the tooth.helical gearbox

Contact ratios

Whether a helical gearbox is dynamic or steady-state, the contact ratio is a key factor. The total contact ratio defines the average number of teeth in contact in the plane of action. It is calculated by multiplying the transverse contact ratio with the overlap ratio. The overlap ratio is always non-zero.
The total contact ratio must be 1.0 or greater for a constant speed rotation on the driven side. Gears with a low total contact ratio are known to slow down rotation of the driven gear. The total contact ratio is influenced by the length of the contact line. A high contact ratio is a good choice for dynamic loading.
A low contact ratio results in a greater amount of profile shift and a larger amount of noise. If the contact ratio is too high, it may cause excessive EAP sliding velocity and cause scuffing. In addition, an uneven load share results in amplitude modulated vibrations.
A helical gear is a pair of slim spur gears. The gears are layered in a plane that runs parallel to the face width of the gear teeth. Each gear tooth makes contact with the flank of the next gear tooth. The helical gear tooth flank is a 3-dimensional surface that is a tangent to the base circles of the gears.
The tooth shape of the helical gear tooth is also a key factor in the contact ratio. The tooth form is designed to be in relation to the work piece, tooling, dedendum coefficients, tooth forces, and tooth bending stiffness. A gear tooth form must also relate to tooth surface kinematics and microgeometry modifications.
The active profile is a region of the involute profile between the start and end points. A tooth profile that satisfies the basic law of gear-tooth action is often called a conjugate profile.
China ZD High Performance High Quality Electric AC/DC Brush Or Brushless Gear Motor Planetary Gearbox Manufacture For Automation Solutions     helical gears buyChina ZD High Performance High Quality Electric AC/DC Brush Or Brushless Gear Motor Planetary Gearbox Manufacture For Automation Solutions     helical gears buy
editor by CX 2023-03-31

China Z89 Helical Gear Box with Electric Motor Hard Surface Gear Unit Siemens helical bevel gearbox manufacturers

Item Description

§§  Overview

SIMOGEAR helical geared motors

Functions

  • Higher selection of transmission ratios (plug-on pinion)
  • Quite financial efficiency
  • Extremely power efficient (efficiencies of 98 % for every phase)
  • Substantial energy assortment

Mechanical design

  • Stages: 1, 2 or three
  • Mounting types: foot-mounted and flange-mounted designs, housing flange
  • Shaft style: CZPT shaft

Transmission phases
 

      • 2-stage or 3-stage helical geared motors

      • 1-phase helical geared motors for higher output speeds

      • 4-stage to 6-stage helical geared motors for very minimal output speeds

Common purposes

  • Conveyor belt
  • Transportation of packaged merchandise
  • Vertical conveyor

Technical information

§§  About new SIMOGEAR geared motors

The SIMOGEAR geared motor provides functionality from .09 kW up to 55 kW. It can achieve a gear unit torque up to 19 500 Nm with helical, parallel shaft, bevel, helical worm and worm geared motors Owing to accordance to the present actions, SIMOGEAR is suitable to numerous other suppliers of geared motors.

      •  SIMOGEAR geared motors are the new era of geared motors from Siemens.
      •  SIMOGEAR geared motors can be acquired as helical geared motors, parallel shaft geared motors, bevel geared motors and helical                 worm geared motors.
      •  The fine-tuned dimensions of the SIMOGEAR gearboxes supply you the appropriate generate concerning the gearbox variety, output nominal torque and ratio.
      •  SIMOGEAR geared motors stand out specifically thanks to their energy efficiency, compactness and their minor bodyweight.

      •  State-of-the-art manufacturing technology and enhanced tests strategies make sure the greatest degree of high quality and dependability.
 

§§  Gearbox variety

 

§§  Advantages at a look
 

• Dependent on an the best possible design and style principle on the gear unit facet, and by employing new, strength-efficient motors, SIMOGEAR performs a function in decreasing the  power costs of your plant or program

• As a end result of the finely scaled portfolio, you only pay for the electrical power rating that you truly demand

• As a outcome of the compact dimensions, SIMOGEAR can even be built-in into the smallest areas


/ Piece
|
1 Piece

(Min. Order)

###

Application: Machinery
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Coaxial
Gear Shape: Bevel Gear
Step: Double-Step

###

Samples:
US$ 500/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:
Available

|



/ Piece
|
1 Piece

(Min. Order)

###

Application: Machinery
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Layout: Coaxial
Gear Shape: Bevel Gear
Step: Double-Step

###

Samples:
US$ 500/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:
Available

|


Helical Gearbox

Using a helical gearbox can greatly improve the accuracy of a machine and reduce the effects of vibration and shaft axis impact. A gearbox is a circular machine part that has teeth that mesh with other teeth. The teeth are cut or inserted and are designed to transmit speed and torque.helical gearbox

Sliding

Among the many types of gearboxes, the helical gearbox is the most commonly used gearbox. This is because the helical gearbox has a sliding contact. The contact between two gear teeth begins at the beginning of one tooth and progresses to line contact as the gear rotates.
Helical gears are cylindrical gears with teeth cut at an angle to the axis. This angle enables helical gears to capture the velocity reversal at the pitch line due to the sliding friction. This leads to a much smoother motion and less wear. Moreover, the helical gearbox is more durable and quieter than other gearboxes.
Helical gears are divided into two categories. The first group comprises of crossed-axis helical gears, commonly used in automobile engine distributor/oil pump shafts. The second group comprises of zero-helix-angle gears, which do not produce axial forces. However, they do create heat, which causes loss of efficiency.
The helical gearbox configuration is often confounded, which results in higher working costs. In addition, the helical gearbox configuration does not have the same torque/$ ratio as zero-helix angle planetary gears.
When designing gears, it is important to consider the effects of gear sliding. Sliding can lead to friction, which can cause loss of power transmission. It also leads to uneven load distribution, which decreases the loadability of the helical planetary gearbox.
In addition, the mesh stiffness of helical gears is commonly ignored by researchers. An analytical model for the mesh stiffness of helical gears has been proposed.

Axial thrust forces

Several options are available for axial thrust forces in helical gearboxes. The most obvious is to use a double helical gear to offset the force component. Another option is to use a thrust bearing with a lower load carrying capacity. This becomes a sacrificial component.
In order to transmit a force, it must be distributed along the contact line. This force is the sum of tangential, radial and axial force components. All these components must be transferred from the source to the output. This is a complex process that involves the use of gears.
The axial force component must be transferred through the gears. The resultant force is then divided into orthogonal components and divided into the thrust directions. The radial force component is from the contact point to the driven gear center.
The axial force component is also determined by the size of the gear’s pitch diameter. A larger pitch diameter results in a greater bearing moment. Similarly, a larger gear ratio will produce a higher torque transmission.
It should be noted that the axial force component is only a small part of the total force. The normal force is distributed along the contact line.
The double helical gear is also not a perfect duplicate of the herringbone gear. It has two equal halves. It is used interchangeably with the herringbone gear. It also has the same helix angle.helical gearbox

Reduced impact on the shaft axis

Increasing the helix angle of a gear pair will reduce resonance effects on the shaft axis of a helical gearbox. However, this will not reduce the overall vibration in the gearbox. In fact, it will increase the vibration. This can lead to serious fatigue faults in the drive train.
This is because the helix angle has an effect on the contact line between two teeth. As the helix angle increases, the length of the contact line decreases. In addition, it has an effect on the normal force and curvature radii of the teeth. The pressure angle also affects the curvature radii.
Helical gears have several advantages over spur gears. These advantages include: lower vibration, NVH (noise, vibration and harshness) characteristics, and smooth operation under heavy loads. They also have better torque capability. However, they produce higher friction. They also require unique approaches to control their thrust forces.
The first step in reducing resonance effects is to regulate the meshing frequency of the helical gear stage. This can be done by varying the shift factors in the gear. If the shift factors are too large, then the gear will experience resonance effects. The helix angle is also affected by the gear’s shift factors. It is therefore important to control the gear’s geometry in order to reduce the resonance effects.
Next, the effects of the web structure and rim thickness on the root stress of the gear are examined. These are measured by strain gage. The results indicate that the maximum root stress is obtained when the worst meshing position is reached.

Quieter operation

Compared to spur gears, helical gears are much quieter in operation. This is due to their larger teeth. Aside from this, they have a higher load-carrying capacity. They also run smoother and have a higher speed capability. Helical gears are also a good substitute for spur gears.
The most significant parameter relating to noise reduction is the gear contact ratio. It ranges from below 1 to more than 10 and is determined by the number of teeth intersecting a parallel shaft line at the pith circle. It is also a good indicator of the level of noise reduction that helical gears provide.
In addition, helical gears have a lower impulse flexure than spur gears. This is because the contact point slides along the helical surface of each tooth. This also adds internal damping to the gear system.
While helical gears are less noisy than spur gears, they do have a high level of wear and tear. This can affect the performance of the gear. However, it is possible to improve the smoothness of the tooth surface by grinding. In addition, running the gears in oil can also help improve the smoothness of the tooth surface.
There are many industries that use helical gears. For example, the automotive industry uses them in their transmissions. They also are used in the agricultural industry. They are often used in heavy trucks.
Helical gears are also known to generate less heat and are quieter than other gears. They can also deliver parallel power transfers between parallel or non-parallel shafts.

Improved accuracy

Increasing the accuracy of a helical gearbox is the key to its operation and reliability. The accuracy of the gearbox is dependent on several features. Among the most important are the profile and lead. Moreover, the power requirements of a gear drive should be taken into consideration.
The profile is the most sensitive feature of a helical gear. If the profile is not symmetric, the gear will run with a noisy spur gear. In addition, the profile is also the most sensitive to lead.
A helical gearbox plays a key role in the power transmission of industrial applications. However, the heavy duty operating conditions make it susceptible to a variety of faults.
A helical gearbox’s performance depends on the accuracy of the individual gears. This is accomplished by minimizing the backlash. A common way to reduce backlash is to approach all target positions from a common direction. This approach also reduces transmission noise.
The accuracy of a helical gearbox can be improved by using a flexible electronic gearbox. This can reduce the degree of twist. Moreover, it can increase the accuracy of gear machining.
A helical gearbox with an electronic gearbox can increase the accuracy of twist compensation. It can also improve the linkage between B-axis, C-axis, and Z-axis. Moreover, the electronic gearbox will ensure the linkage relationship between Y-axis, Z-axis, and C-axis.
The accuracy of a helical Gearbox can be improved by calculating the position error of the gear train. Pitch deviation and helix angle deviation are two types of position error.helical gearbox

Reduced vibration

Using helical gearboxes can reduce vibration and noise. These gears are used in a variety of applications, including automotive transmissions. Moreover, these gears are quiet enough to operate in noise-sensitive applications.
Using CZPT software, three different gearbox housing designs are compared. The external dimensions and mass of each design are kept constant, but different quantities of longitudinal and transverse stiffeners are employed. The resulting models are then compared to experimental results. In addition, the free vibration response of these models is analyzed. The results are shown in Fig. 5.
In terms of noise reduction, the cellular model produces the lowest sound pressure level. However, the cross model produces the higher sound level. The cellular model also produces better peak to peak results.
The input-stage gear pair is the power source of the output-stage gear pair. The output-stage gear pair’s vibration is also studied. This includes a phase diagram and a frequency-domain diagram. The influence of the driving torque and the pinion’s velocity on the vibration is studied in a numerical manner. The time evolution of the normal force and the lubricant stiffness is also studied.
The input-stage pinion modification reduces the input-stage gear pair’s vibration. This reduction is achieved by adding dual bearing support to the input shaft.
China Z89 Helical Gear Box with Electric Motor Hard Surface Gear Unit Siemens     helical bevel gearbox manufacturersChina Z89 Helical Gear Box with Electric Motor Hard Surface Gear Unit Siemens     helical bevel gearbox manufacturers
editor by CX 2023-03-27